若{11,2a1,24,a2},則a的值是_________

 

答案:
解析:

因?yàn)椋?/span>1,2,a1,2,4a2},則a4,aa2

a4,0,1.∵{,1}{1,2,a},所以a=4.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3,…,an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,…,bn
(1)求證:數(shù)列b1,b2,…,bn成等比數(shù)列;
(2)若ak=2k-1(k=1,2,…,n),求和
nk=1
akbk
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•桂林一模)已知y=f(x)是其定義域上的單調(diào)遞增函數(shù),它的反函數(shù)是y=f-1(x),且y=f(x+1)的圖象過A(-4,0),B(2,3)兩點(diǎn),若|f-1(x+1)|≤3,則x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax+b+(x∈R),且f(0)=1.
(1)若f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若y=f(x)在x=1處的切線與y軸交于點(diǎn)B,且A(1,f(1)),求d(a)=|AB|2在a∈[c,+∞]的最小值;
(3)若a=-
1
2
,Mn=f(1)+
1
2
f(2)+
1
3
f(3)+…+
1
n
f(n)-(1+
1
2
+
1
3
+…+
1
n
),an=
2n-1
6Mn
(n∈N*),Sn=a1+a3+…+an,求證:Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城二模)設(shè)函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對(duì)任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為
12
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=(k+1)x2-(2k+1)x+1,x∈R.
(1)若f(x)>0恒成立,求實(shí)數(shù)k的取值范圍;
(2)若x∈(1,2)時(shí),f(x2+2x)>0恒成立,求實(shí)數(shù)k的取值范圍;
(3)當(dāng)k<0時(shí),解不等式f(x)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案