【題目】如圖,三棱柱中, 平面分別為的中點, 是邊長為的正三角形, .

(1)證明: 平面;

(2)求二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)取的中點,利用平行四邊形得到線線平行,進而利用線面平行的判定定理進行證明;(2)利用圖中的垂直關(guān)系建立合適的空間直角坐標系,利用平面的法向量和夾角公式進行求解.

試題解析:(1)取的中點,連接分別為的中點, ,則四邊形是平行四邊形,則平面平面平面.

(2)取中點為等邊三角形, ,又平面平面,建立以為坐標原點, 分別為軸的空間直角坐標系如圖:

,則設(shè)平面的法向量為, ,則,即,令,則,即,平面的法向量為, ,則,得,即,令,則,即,則

,即二面角的余弦值是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點坐標為.

(1)求拋物線的標準方程;

(2)過點作互相垂直的直線,與拋物線分別相交于兩點和兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時).假設(shè)汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.

(1)求這次行車總費用y關(guān)于x的表達式;

(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校高三學生的視力情況,隨機地抽查了該校100名高三學生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,視力在4.65.0之間的學生數(shù)為b,則a,b的值分別為 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體中, 是平行四邊形, 是矩形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列.

(1)求數(shù)列的通項;

(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

() 證明:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)當時,求的單調(diào)區(qū)間;

(2)當時, 恒成立,求的取值范圍;

(3)求證:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查中小學課外使用互聯(lián)網(wǎng)的情況,教育部向華東、華北、華南和西部地區(qū)60所中小學發(fā)出問卷份, 名學生參加了問卷調(diào)查,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖).

(1)要從這名中小學中用分層抽樣的方法抽取名中小學生進一步調(diào)查,則在(小時)時間段內(nèi)應(yīng)抽出的人數(shù)是多少?

(2)若希望的中小學生每天使用互聯(lián)網(wǎng)時間不少于(小時),請估計的值,并說明理由.

查看答案和解析>>

同步練習冊答案