【題目】已知數(shù)列滿足,,,數(shù)列滿足.
(1)證明是等差數(shù)列,并求的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,,記表示不超過x的最大整數(shù),求關(guān)于n的不等式的解集.
【答案】(1)證明見解析; (2)
【解析】
(1)根據(jù)等差數(shù)列定義,求得是常數(shù)即可證明為等差數(shù)列;由累加法,可求得數(shù)列的通項(xiàng)公式.
(2)由代入的通項(xiàng)公式中求得,同取倒數(shù)后可得,結(jié)合裂項(xiàng)法求和可得.判斷出的單調(diào)性,即可求得的值域,即可求得的值.再解關(guān)于的不等式,即可求得正整數(shù)的值,即為不等式的解集.
(1)數(shù)列滿足,數(shù)列滿足
則
且,
所以數(shù)列是以為首項(xiàng),公差為2的等差數(shù)列
則
即
利用遞推公式可得
等式兩邊分別相加可得
而
所以
因?yàn)?/span>也滿足上式
所以
(2)數(shù)列滿足
則
同取倒數(shù)可得
即
所以
而
所以
由
可得
所以
所以
所以
則
所以由定義可得
則不等式等價于
而由(1)可知,,
所以
解得,又
所以
所以關(guān)于n的不等式的解集為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若M為PD的中點(diǎn),求證:ME∥平面PAB;
(Ⅲ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(,).
(1)當(dāng)時,求函數(shù)的極小值點(diǎn);
(2)當(dāng)時,若對一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為分別為的中點(diǎn),以為棱將正方形折成如圖所示的的二面角,點(diǎn)在線段上.
(1)若為的中點(diǎn),且直線,由三點(diǎn)所確定平面的交點(diǎn)為,試確定點(diǎn)的位置,并證明直線平面;
(2)是否存在點(diǎn),使得直線與平面所成的角為;若存在,求此時二面角的余弦值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶(約1202—1261)被國外科學(xué)史家贊譽(yù)為“他那個民族,那個時代,并且確實(shí)也是所有時代最偉大的數(shù)學(xué)家之一”.他獨(dú)立推出了“三斜求積”公式,求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隅,開平方得積.”把以上這段文字寫成從三條邊長求三角形面積的公式,就是.現(xiàn)如圖,已知平面四邊形中,,,,,,則平面四邊形的面積是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(k為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),其中e為自然對數(shù)的底數(shù)。
(1)求k的值;
(2)討論關(guān)于x的方程如的根的個數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3.從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)X表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列.
(注:若三個數(shù),,滿足,則稱為這三個數(shù)的中位數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,分別是的中點(diǎn),將正方形沿著線段折起,使得,設(shè)為的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com