小波以游戲方式?jīng)Q定是去打球、唱歌還是去下棋。游戲規(guī)則為:以O(shè)為起點,再從(如圖)這六個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為,若就去打球,若就去唱歌,若就去下棋。
(1)寫出數(shù)量積的所有可能值;
(2)分別求小波去下棋的概率和不去唱歌的概率。
(1)-2,-1,0,1;(2)
(1)依題意有

由(1)知基本事件有15種,小波下棋有7種,所以其的概率為不唱歌的概率為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A地到火車站共有兩條路徑L1和L2,現(xiàn)隨機(jī)抽取100位從A地到火車站的人進(jìn)行調(diào)查,調(diào)查結(jié)果如下:
所用時間(分鐘)
10~20
20~30
30~40
40~50
50~60
選擇L1的人數(shù)
6
12
18
12
12
選擇L2的人數(shù)
0
4
16
16
4

(1)試估計40分鐘內(nèi)不能         趕到火車站的概率;
(2)分別求通過路徑L1和L2所用時間落在上表中各時間段內(nèi)的頻率;
(3)現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站,為了盡量大可能在允許的時間內(nèi)趕到火車站,試通過計算說明,他們應(yīng)如何選擇各自的 路徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時乙的得分,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙丙丁4人玩?zhèn)髑蛴螒,持球者將球等可能的傳給其他3人,若球首先從甲傳出,經(jīng)過3次傳球.
(1)求球恰好回到甲手中的概率;
(2)設(shè)乙獲球(獲得其他游戲者傳的球)的次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從分別寫有0,1,2,3,4的五張卡片中取出一張卡片,記下數(shù)字后放回,再從中取出一張卡片.則兩次取出的卡片上的數(shù)字之和恰好等于4的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校一位教師要去某地參加全國數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有10名教師,其中男教師6名,女教師4名.
(1)要從中選2名教師去參加會議,有多少種不同的選法?
(2)現(xiàn)要從中選出4名教師去參加會議,求男、女教師各選2名的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若事件A和B是相互獨立事件,且P(A·B)=0.48,P(A·B)=0.08,P(A)>P(B),則P(A)的值為(   )
A.0.5       B.0.6          C.0.8       D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位有車牌尾號為2的汽車A和尾號為6的汽車B,兩車分屬于兩個獨立業(yè)務(wù)部門.對一段時間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計,在非限行日,A車日出車頻率0.6,B車日出車頻率0.5.該地區(qū)汽車限行規(guī)定如下:
車尾號
0和5
1和6
2和7
3和8
4和9
限行日
星期一
星期二
星期三
星期四
星期五
 
現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車相互獨立.
(1)求該單位在星期一恰好出車一臺的概率;
(2)設(shè)X表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案