對于函數(shù)f(x)=
2
(sin x+cos x),給出下列四個命題:
①存在a∈(-
π
2
,0)
,使f(α)=
2

②存在α∈(0,
π
2
)
,使f(x-α)=f(x+α)恒成立;
③存在φ∈R,使函數(shù)f(x+φ)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對稱;
④函數(shù)f(x)的圖象關(guān)于直線x=-
4
對稱;
⑤函數(shù)f(x)的圖象向左平移
π
4
個單位長度就能得到y(tǒng)=-2cos x的圖象.
其中正確命題的序號是( 。
分析:利用輔助角公式,我們可將函數(shù)f(x)的解析式化為正弦型函數(shù)的形式,由正弦型函數(shù)的值域,可以判斷①的真假;根據(jù)正弦型函數(shù)的周期性,可以判斷②的真假;根據(jù)正弦函數(shù)的對稱性,可以判斷③④的真假;根據(jù)正弦型函數(shù)的圖象的平移變換法則,及誘導(dǎo)公式,可以判斷⑤的真假,進(jìn)而得到答案.
解答:解:∵f(x)=
2
(sinx+cosx)=2sin(x+
π
4
),
當(dāng)α∈(-
π
2
,0)
,α+
π
4
∈(-
π
4
π
4
)此時f(α)∈(-
2
,
2
),故①錯誤;
若f(x-α)=f(x+α)恒成立,則2α為函數(shù)的一個周期,則2α=2kπ,k∈N*,即α=kπ,k∈N*,故②錯誤;
存在φ=-
π
4
+kπ,k∈Z,使函數(shù)f(x+?)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對稱,故③正確;
函數(shù)圖象的對稱軸為x=
π
4
+kπ,k∈Z,當(dāng)k=-1時,x=-
4
,故④正確;
函數(shù)f(x)的圖象向左平移
π
4
個單位長度得到y(tǒng)=2sin(x+
π
4
+
π
4
)=2sin(x+
π
2
)=2cosx的圖象,故⑤錯誤.
故選:C.
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換,函數(shù)y=Asin(ωx+φ)的值域,函數(shù)y=Asin(ωx+φ)的對稱性,熟練掌握函數(shù)y=Asin(ωx+φ)的圖象和性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)定義域中任意的x1、x2(x1≠x2)有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2
②f(x1•x2)=f(x1)+f(x2
f(x1)-f(x2)
x1-x2
>0
f(
x1+x2
2
)<
f(x1)+f(x2)
2

當(dāng)f(x)=2x時,上述結(jié)論中正確結(jié)論的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=lg|x-2|+1,有如下三個命題:
①f(x+2)是偶函數(shù);
②f(x)在區(qū)間(-∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);
③f(x+2)-f(x)在區(qū)間(2,+∞)上是增函數(shù).
其中正確命題的序號是
①,②
①,②
.(將你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|,g(x)=x2+2ax+1(a為正實數(shù)),且函數(shù)f(x)與g(x)的圖象在y軸上的截距相等.
(1)求a的值;
(2)對于函數(shù)F(x)及其定義域D,若存在x0∈D,使F(x0)=x0成立,則稱x0為F(x)的不動點(diǎn).若f(x)+g(x)+b在其定義域內(nèi)存在不動點(diǎn),求實數(shù)b的取值范圍;
(3)若n為正整數(shù),證明:10f(n)•(
4
5
)g(n)<4

(參考數(shù)據(jù):lg3=0.3010,(
4
5
)9=0.1342
,(
4
5
)16=0.0281
(
4
5
)25=0.0038

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即 {x}=m.在此基礎(chǔ)上有函數(shù)f(x)=|x-{x}
.
 
(x∈

(1)求f(4),f(-
1
2
),f(-8.3)
的值;
(2)對于函數(shù)f(x),現(xiàn)給出如下一些判斷:
①函數(shù)y=f(x)是偶函數(shù);
②函數(shù)y=f(x)是周期函數(shù);
③函數(shù)y=f(x)在區(qū)間(-
1
2
,
1
2
]
上單調(diào)遞增;
④函數(shù)y=f(x)的圖象關(guān)于直線x=k+
1
2
 &(k∈Z)
對稱;
請你將以上四個判斷中正確的結(jié)論全部選擇出來,并選擇其中一個加以證明;
(3)若-206<x≤207,試求方程f(x)=
9
23
的所有解的和.

查看答案和解析>>

同步練習(xí)冊答案