12.如圖,斜三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為4的正三角形,D是BC的中點(diǎn),A1D⊥平面ABC.
(1)求證:BC⊥A1A;
(2)若A1A=6,求三棱柱ABC-A1B1C1的體積.

分析 (1)連接AD,則BC⊥AD,證明BC⊥平面A1DA,即可證明BC⊥A1A;
(2)若A1A=6,求出A1D=2$\sqrt{6}$,即可求三棱柱ABC-A1B1C1的體積.

解答 (1)證明:連接AD,則BC⊥AD,
∵A1D⊥平面ABC,BC?平面ABC,
∴A1D⊥BC,
∵A1D∩AD=D,
∴BC⊥平面A1DA,
∵BC⊥A1A;
(2)解:∵AD=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,A1D⊥AD,A1A=6,
∴A1D=2$\sqrt{6}$,
∴三棱柱ABC-A1B1C1的體積V=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{4}^{2}×2\sqrt{6}$=8$\sqrt{2}$.

點(diǎn)評(píng) 本題考查線面垂直,考查三棱柱ABC-A1B1C1的體積,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,圓C1:x2+y2=4,圓C2:(x-2)2+y2=4.
(Ⅰ)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓C1,C2的極坐標(biāo)方程,并求出圓C1,C2交點(diǎn)的直角坐標(biāo);
(Ⅱ)求圓C1與C2的公共弦所在直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={0,1},B={1,2,3},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,△ABC內(nèi)接于⊙O,AE與⊙O相切于點(diǎn)A,BD平分∠ABC,交⊙O于點(diǎn)D,交AE的延長(zhǎng)線于點(diǎn)E,DF⊥AE于點(diǎn)F.
(Ⅰ)求證:$\frac{AB}{AD}$=$\frac{AE}{DE}$;
(Ⅱ)求證:AC=2AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的左右焦點(diǎn)為F1、F2,點(diǎn)P為其上動(dòng)點(diǎn),點(diǎn)Q(3,2),則|PF1|-|PQ|的最大值為( 。
A.$6-\sqrt{5}$B.$\sqrt{29}-6$C.$6+\sqrt{5}$D.$\sqrt{29}-4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ex-ax,a∈R.
(Ⅰ)若函數(shù)f(x)在x=0處的切線過(guò)點(diǎn)(1,0),求a的值;
(Ⅱ)若函數(shù)f(x)在(-1,+∞)上不存在零點(diǎn),求a的取值范圍;
(Ⅲ)若a=1,設(shè)函數(shù)$g(x)=\frac{1}{f(x)+ax}+\frac{4x}{{{e^x}-f(x)+4}}$,求證:當(dāng)x≥0時(shí),g(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在某樣本的頻率分布直方圖中,共有7個(gè)小長(zhǎng)方形,若第三個(gè)小長(zhǎng)方形的面積為其他6個(gè)小長(zhǎng)方形的面積和的$\frac{1}{4}$,且樣本容量為100,則第三組數(shù)據(jù)的頻數(shù)為( 。
A.25B.0.2C.0.25D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.矩形ABCD的頂點(diǎn)A,B在直線y=2x+m上,C,D在拋物線y2=4x上,該矩形的外接圓方程為x2+y2-x-4y-t=0.
(1)求矩形ABCD對(duì)角線交點(diǎn)M的坐標(biāo);
(2)求此矩形的長(zhǎng),并求m,t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案