滿足線性約束條件
x≤3
2y≥x
3x+2y≥6
3y≤x+9
的目標(biāo)函數(shù)z=2x-y的最大值是( 。
A、
15
2
B、
9
2
C、
9
4
D、2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,即可求出z的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x-y得y=2x-z,
平移直線y=2x-z,
由圖象可知當(dāng)直線y=2x-z經(jīng)過點(diǎn)C時(shí)y=2x-z的截距最小,此時(shí)z最大.
x=3
2y=x
,
解得
x=3
y=
3
2
,即C(3,
3
2
),
代入z=2x-y=2×3-
3
2
=
9
2

即目標(biāo)函數(shù)z=2x-y最大值為
9
2

故選:B.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義結(jié)合數(shù)形結(jié)合,即可求出z的最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l在x軸和y軸上的截距分別為-9和9.
(1)寫出直線l的方程;
(2)在l上求一點(diǎn)P,使P到點(diǎn)F1(-3,0)、F2(3,0)的距離之和最小,并求這最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,
Sn
n
)在直線y=
1
2
x+
11
2
上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=
3
(2an-11)(2bn-1)
,數(shù)列{cn}的前n和為Tn,求Tn及使不等式Tn
k
2012
對(duì)一切n∈N*都成立的最小正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O和點(diǎn)F分別為橢圓
x2
3
+
y2
4
=1的中心和上焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則
OP
FP
的最大值為( 。
A、2B、3C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱臺(tái)ABC-A1B1C1中,S△ABC=25,S A1B1C1=9,高h(yuǎn)=6.則
(1)三棱錐A1-ABC的體積VA1-ABC=
 
;
(2)求三錐A1-BCC1的體積VA1-BCC1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2-2x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位旅行者體驗(yàn)城市生活,從某地鐵站同時(shí)搭上同一列車,分別從前方5個(gè)地鐵站中隨機(jī)選擇一個(gè)地鐵站下車,則甲、乙兩人不在同一站下車的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足1+2+3+…+n>2011的最小正整數(shù)n,完成算法步驟并畫出程序框圖.
算法步驟:
第一步:令n=1
第二步:令S=0
第三步:
 

第四步:
 

第五步:判斷S>2011是否成立,若是,則執(zhí)行第六步;否則,返回第三步
第六步:輸出
 

程序框圖:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin20°cos40°+sin70°sin40°=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案