如圖所示,扇形AOB,圓心角AOB的大小等于,半徑為2,在半徑OA上有一動(dòng)點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.
(1)若C是半徑OA的中點(diǎn),求線段PC的大。
(2)設(shè)∠COP=θ,求△POC面積的最大值及此時(shí)θ的值.

【答案】分析:(1)在△POC中,根據(jù),OP=2,OC=1,利用余弦定理求得PC的值.
(2)解法一:利用正弦定理求得CP和OC的值,記△POC的面積為S(θ),則,利用
兩角和差的正弦公式化為,可得時(shí),S(θ)取得最大值為
解法二:利用余弦定理求得OC2+PC2+OC•PC=4,再利用基本不等式求得3OC•PC≤4,所以,再根據(jù)OC=PC 求得△POC面積的最大值時(shí)θ的值.
解答:解:(1)在△POC中,,OP=2,OC=1,

得PC2+PC-3=0,解得
(2)解法一:∵CP∥OB,∴,
在△POC中,由正弦定理得,
,∴
,∴
記△POC的面積為S(θ),則=
===
==,
時(shí),S(θ)取得最大值為
解法二:,即OC2+PC2+OC•PC=4.
又OC2+PC2+OC•PC≥3OC•PC,即3OC•PC≤4,當(dāng)且僅當(dāng)OC=PC時(shí)等號(hào)成立,
所以,∵OC=PC,
時(shí),S(θ)取得最大值為
點(diǎn)評:本題主要考查兩角和差的正弦公式,正弦定理、余弦定理、基本不等式的,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,扇形AOB中,
AB
所對的圓心角是60°,半徑為50米,求
AB
的長l(精確到0.1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)如圖所示,扇形AOB,圓心角AOB的大小等于
π3
,半徑為2,在半徑OA上有一動(dòng)點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.
(1)若C是半徑OA的中點(diǎn),求線段PC的大;
(2)設(shè)∠COP=θ,求△POC面積的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)如圖所示,扇形AOB,圓心角AOB的大小等于
π3
,半徑為2,在半徑OA上有一動(dòng)點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.
(1)若C是OA的中點(diǎn),求PC;
(2)設(shè)∠COP=θ,求△POC周長的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動(dòng)點(diǎn)P,過P引平行于OB的直線和OA交于點(diǎn)C,設(shè)∠AOP=,求△POC面積的最大值及此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動(dòng)點(diǎn)P,過P引平行于OB的直線和OA交于點(diǎn)C,設(shè)∠AOP=,求△POC面積的最大值及此時(shí)的值.

查看答案和解析>>

同步練習(xí)冊答案