點P是曲線y=x2-lnx上任意一點,則點P到直線y=x+2的距離的最小值是   
【答案】分析:求出平行于直線y=x+2且與曲線y=x2-lnx相切的切點坐標,再利用點到直線的距離公式可得結(jié)論.
解答:解:設P(x,y),則y′=2x-(x>0)
令2x-=1,則(x-1)(2x+1)=0,
∵x>0,∴x=1
∴y=1,即平行于直線y=x+2且與曲線y=x2-lnx相切的切點坐標為(1,1)
由點到直線的距離公式可得d==
故答案為:
點評:本題考查導數(shù)知識的運用,考查點到直線的距離公式,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)[理]如圖,已知動點A,B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實線上運動,若AB∥x軸,點N的坐標為(1,0),則△ABN的周長l的取值范圍是
 

[文]點P是曲線y=x2-lnx上任意一點,則P到直線y=x-2的距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是曲線y=x2-x上任意一點,則點P到直線y=x-3的距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐵嶺模擬)點P是曲線y=x2-lnx上任意一點,則點P到直線y=x+2的距離的最小值是
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P是曲線y=x2-lnx上一點,且在點P處的切線與直線y=x-2平行,則點P的橫坐標為
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是曲線y=x2-lnx上任意一點,則點P到直線x-y-4=0的距離的最小值是
 

查看答案和解析>>

同步練習冊答案