1.如果復(fù)數(shù)在z=$\frac{3-i}{2+i}$,則|z|等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.2

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,再由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:z=$\frac{3-i}{2+i}$=$\frac{(3-i)(2-i)}{(2+i)(2-i)}=\frac{5-5i}{5}=1-i$,
則|z|=$\sqrt{1+(-1)^{2}}=\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知奇函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),且不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0對(duì)任意兩個(gè)不相等的正實(shí)數(shù)x1,x2都成立,在下列不等式中,正確的是( 。
A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若$sin({\frac{π}{3}-α})=\frac{1}{3}$,則$cos({\frac{π}{3}+2α})$=(  )
A.$\frac{7}{9}$B.$\frac{2}{3}$C.$-\frac{2}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn):
(1)sin($\frac{π}{6}$-2π)cos($\frac{π}{4}$+π)
(2)sin($\frac{π}{4}$+$\frac{5π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{g(x),x<0}\end{array}}$為奇函數(shù),則g(x)=-x2-2x(x<0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.△ABC中,AB=6,AC=8,∠BAC=90°,△ABC所在平面α外一點(diǎn)P到點(diǎn)A、B、C的距離都是13,則P到平面α的距離為(  )
A.7B.9C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知拋物線y2=-x與直線y=k(x+1)相交于A,B兩點(diǎn).
(1)求證:OA⊥OB;
(2)是否存k使△OAB的面積等于1,若存在求k的值,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=lnx+ax.
(1)若曲線f(x)在點(diǎn)(1,f(1))處的切線與直線y=4x+1平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在$\widehat{AB}$上,且OM∥AC.
(Ⅰ)求證:平面MOE∥平面PAC;
(Ⅱ)求證:平面PAC⊥平面PCB.

查看答案和解析>>

同步練習(xí)冊(cè)答案