14.把23化為二進(jìn)制數(shù)是10111(2).

分析 利用“除k取余法”是將十進(jìn)制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:23÷2=11…1
11÷2=5…1
5÷2=2…1
2÷2=1…0
1÷2=0…1
故23(10)=10111(2).
故答案為:10111(2).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是十進(jìn)制與其它進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)O為線段BD的中點(diǎn).設(shè)點(diǎn)P在線段B1C1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( 。
A.$[\frac{{\sqrt{6}}}{3},1]$B.$[\frac{{\sqrt{2}}}{3},1]$C.$[\frac{{\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{\sqrt{6}}}{3},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={x|x2-3x+2<0},B={x|1<x<a}(a為實(shí)常數(shù)).
(Ⅰ)若a=$\frac{3}{2}$,求A∩B;  
(Ⅱ)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.等差數(shù)列{an}中,a1=2,a2=5,則a5=_14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將y=2x的圖象關(guān)于直線y=x對(duì)稱后,再向右平行移動(dòng)一個(gè)單位所得圖象表示的函數(shù)的解析式是( 。
A.y=log2(x+1)B.y=log2(x-1)C.y=log2x+1D.y=log2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.(-3)0+$\sqrt{{{(-\frac{1}{2})}^2}}-{({\frac{8}{27}})^{-\frac{1}{3}}}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)命題p:(4x-3)2≤1;命題q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,
(1)p是q的什么條件?
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn) P(-1,1)在曲線y=$\frac{x^2}{x+a}$上,則曲線在點(diǎn) P處的切線方程為y=-3x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,E、F、O分別是PA,PB,AC的中點(diǎn),G是OC的中點(diǎn),求證:FG∥平面BOE(兩種方法證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案