精英家教網 > 高中數學 > 題目詳情
將等邊三角形ABC沿中線AD對折使BD⊥AC,那么AB與平面ACD所成的角是______.
如圖所示,
∵BD⊥DC,BD⊥AC,DC∩AC=C,
∴BD⊥平面ACD.
∴∠BAD是AB與平面ACD所成的角,
∵∠BAD=30°,∴AB與平面ACD所成的角是30°.
故答案為30°.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且DB=DC=2,點E為BC的中點,若直線AE與底面BCD所成的角為45°,則三棱錐A-BCD的體積等于(  )
A.
2
3
B.
4
3
C.2D.
2
2
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中直線A1C1與平面A1BD夾角的余弦值是( 。
A.
2
4
B.
2
3
C.
3
3
D.
3
2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖1,在等腰△ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點,CD=BE=
2
,O為BC的中點.將△ADE沿DE折起,得到如圖2所示的四棱錐A′-BCDE.若A′O⊥平面BCDE,則A′D與平面A′BC所成角的正弦值等于( 。
A.
2
3
B.
3
3
C.
2
2
D.
2
4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°,則AB與平面ADC所成角的正弦值為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,點D為AB的中點.
1)求證:BC1面A1DC;
2)求棱AA1的長,使得A1C與面ABC1所成角的正弦值等于
2
15
30

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,在三棱錐P-ABC中,PA=PB=PC=BC,且∠BAC=
π
2
,則PA與底面ABC所成角為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知平面四邊形ABCD的對角線AC,BD交于點O,AC⊥BD,且BA=BC=4,DA=DC=2
3
,∠ABC=60°.現(xiàn)沿對角線AC將三角形DAC翻折,使得平面DAC⊥平面BAC.翻折后:
(Ⅰ)證明:AC⊥BD;
(Ⅱ)記M,N分別為AB,DB的中點.①求二面角N-CM-B大小的余弦值;②求點B到平面CMN的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

二面角α-EF-β的大小為120°,A是它內部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

同步練習冊答案