【題目】已知橢圓的離心率為且拋物線的焦點恰好是橢圓的一個焦點.

(Ⅰ)求橢圓的方程

(Ⅱ)過點作直線與橢圓交于,兩點,滿足為坐標原點),求四邊形面積的最大值并求此時直線的方程.

【答案】1;(2)平行四邊形OANB的面積最大值為2,直線的方程為.

【解析】

試題本題主要考查橢圓的標準方程和幾何性質、拋物線的標準方程和幾何性質、直線與橢圓相交問題等基礎知識,意在考查考生的分析問題解決問題的能力、運算求解能力. 第一問,利用橢圓的離心率和拋物線的焦點坐標列出方程,解出a,b,c的值,從而得到橢圓的標準方程;第二問,對直線的斜率進行討論,當斜率存在時,將直線方程與橢圓方程聯(lián)立,消參,得到關于x的方程,利用韋達定理,得到代入到中,通過換元法再利用均值不等式求出最大值,從而得到直線方程.

試題解析:()設橢圓的焦距為,離心率為,,,又點是拋物線的焦點,,橢圓C的方程為. 4

,四邊形OANB為平行四邊形,當直線的斜率不存在時,顯然不符合題意;

當直線的斜率存在時,設直線的方程為,直線與橢圓于、兩點,由.

. 6

, 7

, 9

,則(由上式知),

當且僅當,即時取等號,

時,平行四邊形OANB的面積最大值為2.

此時直線的方程為. 12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某零售公司從1月至6月的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下:

月份

1

2

3

4

5

6

銷售量/萬件

6

8

12

13

11

10

利潤/萬元

12

16

26

29

25

22

(1)根據(jù)2月至5月4個月的統(tǒng)計數(shù)據(jù),求出關于的回歸直線方程.(的結果用分數(shù)表示);

(2)若由回歸直線方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差均不超過1萬元,則認為得到的回歸直線方程是有效的.試用1月和6月的數(shù)據(jù)估計所得的回歸直線方程是否有效?

參考公式:,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù).

(1)當時, ,若當時, 恒成立,求的最小值;

(2)若的圖像關于對稱,且時, ,求當時, 的解析式;

(3)當時, .若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列幾個命題:①若方程的兩個根異號,則實數(shù);②函數(shù)是偶函數(shù),但不是奇函數(shù);③函數(shù) 上是減函數(shù),則實數(shù)a的取值范圍是;④ 方程 的根滿足,則m滿足的范圍,其中不正確的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二年級組織成語聽說大賽,每班選10名同學參賽,要求每位同學回答5個成語,各位同學的得分總和算作本班成績,其中一班的張明同學參賽,他每道題答對的概率均為,且每道題答對與否互不影響.計分辦法規(guī)定為答對不超過3個題時,每答對一個得一分,超過三個,每多答對一個得兩分.

(1)求張明至少答對三道題的概率;

(2)設張明答完5道題得分為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·龍巖質檢]已知,

1)討論的單調性;

2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、為拋物線上的兩點,的中點的縱坐標為4,直線的斜率為.

(1)求拋物線的方程;

(2)已知點、為拋物線(除原點外)上的不同兩點,直線、的斜率分別為,且滿足,記拋物線、處的切線交于點線段的中點為,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設二次函數(shù)滿足下列條件:當時,的最小值為0,且成立;當時,恒成立.

1)求的解析式;

2)若對,不等式恒成立、求實數(shù)的取值范圍;

3)求最大的實數(shù),使得存在實數(shù),只要當時,就有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中三年級的甲、乙兩個同學同時參加某大學的自主招生,在申請的材料中提交了某學科10次的考試成績,記錄如下:

甲:78 86 95 97 88 82 76 89 92 95

乙:73 83 69 82 93 86 79 75 84 99

(1)根據(jù)兩組數(shù)據(jù),作出兩人成績的莖葉圖,并通過莖葉圖比較兩人本學科成績平均值的大小關系及方差的大小關系(不要求計算具體值,直接寫出結論即可)

(2)現(xiàn)將兩人的名次分為三個等級:

成績分數(shù)

等級

合格

良好

優(yōu)秀

根據(jù)所給數(shù)據(jù),從甲、乙獲得“優(yōu)秀”的成績組合中隨機選取一組,求選中甲同學成績高于乙同學成績的組合的概率.

查看答案和解析>>

同步練習冊答案