分析 設扇形的圓心角的弧度數(shù)為α,半徑為r,弧長為l,面積為S,由面積公式和周長可得到關(guān)于l和r的方程組,求出l和r,由弧度的定義求α即可.求出a,利用正弦函數(shù)的圖象與性質(zhì),可得結(jié)論.
解答 解:S=$\frac{1}{2}$(8-2r)r=4,r2-4r+4=0,r=2,l=4,|α|=$\frac{l}{r}$=2.
若點(a,9)在函數(shù)y=3x的圖象上,則a=2,
不等式sin2x≥$\frac{\sqrt{3}}{2}$,則$\frac{π}{3}$+2kπ≤2x≤$\frac{2π}{3}$+2kπ,k∈Z,
∴$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
∴不等式sin2x≥$\frac{\sqrt{3}}{2}$的解集為{x|$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z}.
故答案為:2,{x|$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z}.
點評 本題考查弧度的定義、扇形的面積公式,考查三角不等式,屬基本運算的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{3}{2}$) | B. | ($\frac{3}{2}$,0) | C. | (0,$\frac{1}{24}$) | D. | ($\frac{1}{24}$,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù),在 (0,+∞)上是增函數(shù) | B. | 奇函數(shù),在 (0,+∞)上是減函數(shù) | ||
C. | 偶函數(shù),在 (0,+∞)上是減函數(shù) | D. | 偶函數(shù),在 (0,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
x | 1 | 2 | 3 |
f(x) | 2 | 3 | 1 |
g(x) | 3 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com