(14分)如圖:正方體ABCD-A1B1C1D1,過線段BD1上一點(diǎn)P(P平面ACB1)作垂直于D1B的平面分別交過D1的三條棱于E、F、G.

(1)求證:平面EFG∥平面A CB1,并判斷三角形類型;

(2)若正方體棱長為a,求△EFG的最大面積,并求此時(shí)EF與B1C的距離.

 

【答案】

(1)見解析;(2)a。

【解析】

試題分析: (1)分析:要證平面EFG平面ACB1,由題設(shè)知只要證BD1垂直平面ACB1即可.

證明:以D為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖5,不妨設(shè)正方體棱長為a,則A(a,0,0),

B(a,a,0),C(0,a,0),D1(0,0,a),B1(a,a,a),E(xE,0,a),F(xiàn)(0,yF,a),G(0,0,zG).

=(-a,-a,a),=(0,a,a),(-xE,yF,0),=(-a,a,0),=(-a,0,-a),

·=(-a,-a,a)·(0,a,a)=0,

 ,

同理 ,

不共線且相交于點(diǎn)A,

⊥平面ACB1,又已知⊥平面EFG,

∴ 平面EFG∥平面ACB1;

又因?yàn)?sub>⊥平面EFG,所以 ,

·=0, 

即 (-a,-a,a)·(-xE,yF,0)=0,

化簡得  xE-yF=0;

同理    xE-zG=0,  yF-zG=0,

易得   ==,

 ∴  △EFG為正三角形.

(2)解:因?yàn)椤鱁FG是正三角形,顯然當(dāng)△EFG與△A1C1D重合時(shí),△EFG的邊最長,其面積也最大,此時(shí),=A1C1=·a,

 ∴=

         = ·sin600

         = ·

         =·  .

此時(shí)EF與B1C的距離即為A1C1與B1C的距離,由于兩異面直線所在平面平行,所求距離轉(zhuǎn)化為求點(diǎn)B1到平面 A1C1D的距離,記A1C1與B1D1交于點(diǎn)O1,作O1H∥D1B并交BB1于點(diǎn)H,則O1H⊥平面A1C1D,垂足為O1,則O1(,,a),H(a,a,),而作為平面A1C1D的法向量,

所以異面直線EF與B1C的距離設(shè)為d是

d = ==·a.

考點(diǎn):本題主要考查空間向量的應(yīng)用,綜合考查向量的基礎(chǔ)知識(shí)。

點(diǎn)評(píng):以向量為工具,利用空間向量坐標(biāo)及數(shù)量積,求距離、所成的角是立體幾何中的常見問題和處理手段.

(1)用純粹的幾何方法要輾轉(zhuǎn)證明EF∥AC,EG∥B1C,F(xiàn)G∥AB1來證明,而我們借用向量法使問題代數(shù)化,運(yùn)算簡潔,思路簡單明了.

(2)證明(2)時(shí)一般要找到求這兩平面距離的兩點(diǎn),如圖。而這兩點(diǎn)為K與J,在立體圖形中較難確定,且較難想到通過作輔助線DO1,OB1來得到,加上在如此復(fù)雜的空間圖形中容易思維混亂,但只要借助平面法向量求線段的射影長度的思想,結(jié)合題設(shè),使思路清晰明了,最終使問題的解決明朗化;把握這種思想,不管是空間線線距離,線面距離,面面距離問題,一般我們都能轉(zhuǎn)化成點(diǎn)線或點(diǎn)面距離,再借助平面法向量很好地解決了.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個(gè)頂點(diǎn)都在球O的球面上,問球O的表面積.
(1) 如果球O和這個(gè)正方體的六個(gè)面都相切,則有S=
 

(2)如果球O和這個(gè)正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點(diǎn).證明:向量
A1B
、
B1C
、
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.
(1)求GH長的取值范圍;
(2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點(diǎn),O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個(gè)點(diǎn)不在同一個(gè)平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點(diǎn),且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案