已知(x-3)2+y2=6,求
y
x
的值域.
考點:直線與圓的位置關系
專題:直線與圓
分析:設k=
y
x
,則y=kx,利用直線和圓的位置關系即可得到結論.
解答: 解:設k=
y
x
,則y=kx,即kx-y=0,
圓心為(3,0),半徑r=
6

則由點到直線的距離d=
|3k|
1+k2
,
由d=
|3k|
1+k2
6

得9k2≤6+6k2,
即3k2≤6,即-
2
≤k≤
2

y
x
的值域是[-
2
,
2
].
點評:本題主要考查函數(shù)的值域,利用直線和圓的位置關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) 已知實數(shù)x、y滿足線性約束條件
3x-y≥0
x+y-4≤0
x-3y+5≤0
,則目標函數(shù)z=x-y-1的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(1+i)=i(i為虛數(shù)單位),則z為( 。
A、
1+i
2
B、
i-1
2
C、1+i
D、1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構成數(shù)列{an},每年發(fā)放的電動型汽車牌照數(shù)為構成數(shù)列{bn},完成下列表格,并寫出這兩個數(shù)列的通項公式;
a1=10a2=9.5a3=
 
     
a4=
 
       
b1=2b2=
 
b3=
 
  
 b4=
 
       
(2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內,每售出1盒該產品獲利潤50元,未售出的產品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了160盒該產品,以X(單位:盒,100≤X≤200)表示這個丌學季內的市場需求量,Y(單位:元)表示這個開學季內經(jīng)銷該產品的利潤.
(Ⅰ)根據(jù)直方圖估計這個丌學季內市場需求量X的平均數(shù)和眾數(shù);
(Ⅱ)將Y表示為X的函數(shù);
(Ⅲ)根據(jù)直方圖估計利潤不少于4800元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線x-y+
6
=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A、B兩點,且kOA•kOB=-
b2
a2
,判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在正三棱柱(底面是正三角形的直棱柱)A1B1C1-ABC中,M為A1B1的中點,P∈平面ABC,PA⊥平面ACC1A1,且AB=AA1=4,PA=4
3

(1)求證:C1M⊥平面PCC1;
(2)求二面角A1-PC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=loga
1
a
-
1
x
),其中0<a<1.
(1)證明f(x)在區(qū)間(a,+∞)上是減函數(shù);
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求x的取值范圍:(x+2)(x-a)>0.

查看答案和解析>>

同步練習冊答案