傾斜角不是________的直線,它的傾斜角的________叫做這條直線的斜率,記為:________.

答案:
解析:

,正切,ktanα


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
6
3
,且傾斜角為60°的直線l過點(diǎn)(0,-2
3
)
和橢圓C的右焦點(diǎn)F.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若已知D(3,0),點(diǎn)M,N是橢圓C上不重合的兩點(diǎn),且
DM
DN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、若l1與l2為兩條不重合的直線,它們的傾斜角分別為a1,a2,斜率分別為k1,k2,則下列命題
(1)若l1∥l2,則斜率k1=k2;  (2)若斜率k1=k2,則l1∥l2;
(3)若l1∥l2,則傾斜角a1=a2;(4)若傾斜角a1=a2,則l1∥l2;
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的左,右焦點(diǎn)坐標(biāo)分別為(-2,0),(2,0),離心率是
6
3
,過左焦點(diǎn)任作一條與坐標(biāo)軸不垂直的直線交E于A、B兩點(diǎn).
(1)求E的方程;
(2)已知點(diǎn)M(-3,0),試判斷直線AM與直線BM的傾斜角是否總是互補(bǔ),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)如圖已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F,圓M的圓心在x軸的正半軸上,且與y軸相切.過原點(diǎn)作傾斜角為
π
3
的直線t,交l于點(diǎn)A,交圓M于點(diǎn)B,且|AO|=|OB|=2.
(1)求圓M和拋物線C的方程;
(2)設(shè)G,H是拋物線C上異于原點(diǎn)O的兩個不同點(diǎn),且
OG
OH
=0
,求△GOH面積的最小值;
(3)在拋物線C上是否存在兩點(diǎn)P,Q關(guān)于直線m:y=k(x-1)(k≠0)對稱?若存在,求出直線m的方程,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案