設(shè)
,
分別是橢圓
的左、右焦點,過
的直線交橢圓于
,
兩點,若
,
,則橢圓的離心率為( )
試題分析:由條件
,則
x軸,而
,∴
為等邊三角形,而周長為4a,
∴等邊三角形的邊長為
,焦點在直角三角形
中,
,
,
,
∴
,即
,∴
,∴
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的短軸長為
,且斜率為
的直線
過橢圓
的焦點及點
.
(1)求橢圓
的方程;
(2)已知直線
過橢圓
的左焦點
,交橢圓于點P、Q.
(。┤魸M足
(
為坐標(biāo)原點),求
的面積;
(ⅱ)若直線
與兩坐標(biāo)軸都不垂直,點
在
軸上,且使
為
的一條角平分線,則稱點
為橢圓
的“特征點”,求橢圓
的特征點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知與曲線C:x2+y2-2x-2y+1=0相切的直線l交x軸、y軸于A、B兩點,O為原點,且|OA|=a,|OB|=b,(a>2,b>2).
(1)求證:曲線C與直線l相切的條件是(a-2)(b-2)=2;
(2)求線段AB中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點A(-2,0),B(1,0),平面內(nèi)的動點P滿足|PA|=λ|PB|(λ為常數(shù),λ>0).
(1)求點P的軌跡E的方程,并指出其表示的曲線的形狀.
(2)當(dāng)λ=2時,P的軌跡E與x軸交于C、D兩點,M是軌跡上異于C、D的任意一點,直線l:x=-3,直線CM與直線l交于點C′,直線DM與直線l交于點D'.求證:以C′D′為直徑的圓總過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓的一個焦點為F(0,1),離心率
,則該橢圓的標(biāo)準(zhǔn)方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的漸近線方程為
,則以它的頂點為焦點,焦點為頂點的橢圓的離心率等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)圓(x+1)
2+y
2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓C:
,點M與C的焦點不重合,若M關(guān)于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
從橢圓短軸的一個端點看長軸的兩個端點的視角為
,那么此橢圓的離心率為( )
查看答案和解析>>