如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD為長方形,AD=2AB,點(diǎn)E、F分別是線段PD、PC的中點(diǎn).
(Ⅰ)證明:EF∥平面PAB;
(Ⅱ)在線段AD上是否存在一點(diǎn)O,使得BO⊥平面PAC,若存在,請(qǐng)指出點(diǎn)O的位置,并證明BO⊥平面PAC;若不存在,請(qǐng)說明理由.

證明:(Ⅰ)∵四邊形ABCD為長方形,
∴CD∥AB,
∵EF∥CD,∴EF∥AB,
又∵EF?平面PAB,AB?平面PAB,
∴EF∥平面PAB. …(6分)
(Ⅱ) 在線段AD上存在一點(diǎn)O,使得BO⊥平面PAC,
此時(shí)點(diǎn)O為線段AD的四等分點(diǎn),滿足,…(8分)
∵長方形ABCD中,
∠BAO=∠ADC=90°,=
∴△ABO∽△ADC,
∴∠ABO+∠CAB=∠DAC+∠CAB=90°,
∴AC⊥BO,(10分)
又∵PA⊥底面ABCD,BO?底面ABCD,
∴PA⊥BO,
∵PA∩AC=A,PA、AC?平面PAC
∴BO⊥平面PAC.(12分)
分析:(I)根據(jù)平行線的傳遞性,得到EF∥AB,再結(jié)合線面平行的判定定理,可得EF∥平面PAB.
(II)在線段AD上存在靠A點(diǎn)較近的一個(gè)四等分點(diǎn)O,使得BO⊥平面PAC.先在長方形ABCD中,證出△ABO∽△ADC,利用角互余的關(guān)系,得到AC⊥BO,再利用線面垂直的判定定理,可證出PA⊥BO,結(jié)合PA、AC是平面PAC內(nèi)的相交直線,最終得到BO⊥平面PAC.
點(diǎn)評(píng):本題以底面為長方形、一條側(cè)棱垂直于底的四棱錐為載體,通過證明線線垂直和線面平行,著重考查了線面平行的判定定理、線面垂直的判定與性質(zhì)等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案