設(shè)偶函數(shù)f(x)=loga|x-b|在(-∞,0)上單調(diào)遞增,則f(a+1)與f(b-2)的大小關(guān)系為( 。
A、f(a+1)=f(b-2)
B、f(a+1)≤f(b-2)
C、f(a+1)>f(b-2)
D、f(a+1)<f(b-2)
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先由函數(shù)為偶函數(shù),求出b的值為0,然后利用復合函數(shù)的單調(diào)性可知0<a<1,從而得出結(jié)論.
解答: 解因為函數(shù)f(x)=loga|x-b|,所以對定義圖內(nèi)任意實數(shù)x都有f(-x)=f(x),
即loga|-x-b|=loga|x-b|,所以|-x-b|=|x-b|,所以b=0,
∴f(x)=loga|x|,
∵偶函數(shù)f(x)=loga|x|在(-∞,0)上單調(diào)遞增,y=|x|在(-∞,0)上單調(diào)遞減,
∴0<a<1,
∴1<a+1<b+2=2,
∴l(xiāng)oga|a+1|>loga2,
∴f(a+1)>f(b-2);
綜上,f(a+1)>f(b-2).
故選:C.
點評:本題考查了不等關(guān)系與不等式,重點考查了對數(shù)函數(shù)的單調(diào)性,考查了分類討論的數(shù)學思想,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

f(x)=(m-1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是( 。
A、減函數(shù)B、增函數(shù)
C、有增有減D、增減性不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)m和n是一對異面直線,它們所成個的角為θ,且0<θ<
π
2
,以下四個命題中,
①在過m的平面中存在平面α,使n∥α;
②在過m的平面中存在平面β,使n⊥β;
③在過m,n的平面中存在平面α,β,使它們所形成的二面角(較小的)的大小為θ;
④在過m的平面中存在平面γ,使n和γ所形成的線面角的大小為θ.
正確命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(3,0),(3,
3
),的直線的傾斜角為(  )
A、0°B、30°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中既是偶函數(shù),又在(0,+∞)上為增函數(shù)的是( 。
A、y=x-2
B、y=x-1
C、y=x2
D、y=x
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-10,4]上隨機取一個數(shù)x,則x滿足不等式x2-x-2<0的概率是( 。
A、
9
14
B、
3
14
C、
11
14
D、
5
14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐P-ABC的所有頂點都在球O的球面上,AB=5,AC=3,BC=4,PB為球O的直徑,PB=10,則這個三棱錐的體積為(  )
A、30
3
B、15
3
C、10
3
D、5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+
3
2
bx2-6x+1,f′(-1)=0,f′(2)=0

(I)求函數(shù)f(x)的解析式.
(II)對于?x1、x2∈[0,3],求證|f(x1)-f(x2)|≤10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
a
x-1
在(0,
1
e
)內(nèi)有極值.
(1)求實數(shù)a的取值范圍;
(2)若m,n分別為f(x)的極大值和極小值,記S=m-n,求S的取值范圍.(注:e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習冊答案