A. | 24米 | B. | $12\sqrt{5}$米 | C. | $12\sqrt{7}$米 | D. | 36米 |
分析 由題意畫出圖象,由圖求出∠CDB和∠ADB的值,設CD=h,由條件在直角三角形求出邊AD、BD,由余弦定理列出方程求出CD的值.
解答 解:由題意畫出圖象:
則∠CDB=30°,∠ADB=90°+60°=150°,且AB=84,
設CD=h,則在RT△ADC中,AD=CD=h,
在RT△BDC中,BD=$\frac{CD}{tan∠CBD}$=$\frac{h}{tan30°}$=$\sqrt{3}h$,
在△ABD中,由余弦定理得,
AB2=AD2+BD2-2•AD•BD•cos∠ADB,
則$8{4}^{2}={h}^{2}+(\sqrt{3}h)^{2}-2h×\sqrt{3}h×(-\frac{\sqrt{3}}{2})$,
化簡得,7h2=842,解得h=$12\sqrt{7}$(米),
故選C.
點評 本題考查了余弦定理在實際中的應用,以及方程思想,解題的關鍵是正確畫出圖象,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若x=0或x=1,則x2-x≠0 | B. | 若x2-x=0,則x=0或x=1 | ||
C. | 若x≠0或x≠1,則x2-x≠0 | D. | 若x≠0且x≠1,則x2-x≠0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
男生 | 女生 | 合計 | |
收看 | 10 | ||
不收看 | 8 | ||
合計 | 30 |
P(x2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com