已知x,y滿足
x+y-1≥0
x-y≥0
x≤2
,則目標(biāo)函數(shù)z=x+y的最大值是( 。
A、2B、3C、4D、5
考點:簡單線性規(guī)劃
專題:計算題,不等式的解法及應(yīng)用
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.
解答: 解:作圖
易知可行域為一個三角形,
其三個頂點為(2,1),(2,2),(
1
2
,
1
2
),
z=x+y表示直線在y軸上的截距,驗證知在點(2,2)時取得最大值4
故選C.
點評:本小題是考查線性規(guī)劃問題,本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[-2,+∞),部分對應(yīng)值如下表:
x-204
f(x)1-11
f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖所示,若f(x2+3x)<1,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示算法程序框圖中,令a=tan315°,b=sin315°,c=cos315°,則輸出結(jié)果為( 。
A、1
B、-1
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(0,1)上的函數(shù)f(x),對任意的m,n∈(1,+∞)且m<n時,都有f(
1
m
)-f(
1
n
)=f(
m-n
1-mn
).記an=f(
1
n2+5n+5
),n∈N*,則在數(shù)列{an}中,a1+a2+…+a8的值為( 。
A、f(
1
2
B、f(
1
3
C、f(
1
4
D、f(
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果θ=12rad,那么角θ的終邊所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax-b的圖象如圖所示,其中a,b為常數(shù),則下列結(jié)論正確的是( 。
A、a>1,b<0
B、0<a<1,b>0
C、a>1,b>0
D、0<a<1,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過兩點P(2,2),Q(4,2),且圓心在直線x-y=0上的圓的標(biāo)準(zhǔn)方程是( 。
A、(x-3)2+(y-3)2=2
B、(x+3)2+(y+3)2=2
C、(x-3)2+(y-3)2=
2
D、(x+3)2+(y+3)2=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1>b>-1,則下列不等式中恒成立的是( 。
A、a>b2
B、
1
a
1
b
C、
1
a
1
b
D、a2>2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AD是△ABC的中線,E在AC邊上,AD交BE與F,若AE:EC=2:1,則AF:FD=(  )
A、2:1B、3:1
C、4:1D、5:1

查看答案和解析>>

同步練習(xí)冊答案