分析 利用|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|=|$\overrightarrow{AC}$-$\overrightarrow{AB}$|可知∠A=90°,進(jìn)而計(jì)算可得結(jié)論.
解答 解:∵|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,
∴${\overrightarrow{AB}}^{2}$+2$\overrightarrow{AB}$•$\overrightarrow{AC}$+${\overrightarrow{AC}}^{2}$=${\overrightarrow{BC}}^{2}$=$(\overrightarrow{AC}-\overrightarrow{AB})^{2}$=${\overrightarrow{AB}}^{2}$-2$\overrightarrow{AB}$•$\overrightarrow{AC}$+${\overrightarrow{AC}}^{2}$,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,即∠A=90°,
又∵|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=$\sqrt{3}$,
∴$|\overrightarrow{BC}|$=$\sqrt{|\overrightarrow{AB}{|}^{2}+|\overrightarrow{AC}{|}^{2}}$=2,
∴cos∠B=$\frac{|\overrightarrow{AB}|}{|\overrightarrow{BC}|}$=$\frac{1}{2}$,
∴$\frac{2\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$=$\frac{2|\overrightarrow{BA}|•|\overrightarrow{BC}|•cos∠B}{|\overrightarrow{BC}|}$=2$•\frac{1}{2}•$|$\overrightarrow{BA}$|=1,
故答案為:1.
點(diǎn)評 本題考查平面向量數(shù)量積的運(yùn)算,找出∠A=90°是解決本題的關(guān)鍵,注意解題方法的積累,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|2<x<3} | B. | {x|-3<x<-2} | C. | {x|$\frac{1}{3}$<x$<\frac{1}{2}$} | D. | {x|-$\frac{1}{2}$<x$<-\frac{1}{3}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com