精英家教網 > 高中數學 > 題目詳情

【題目】已知正方體的六個面的中心可構成一個正八面體,現從正方體內部任取一個點,則該點落在這個正八面體內部的概率為(

A.B.C.D.

【答案】C

【解析】

設正方體的棱長是1,構成的八面體可以看作是由兩個正四棱錐組成,一個正四棱錐的高等于正方體棱長的一半,正四棱錐的底面邊長根據勾股定理可知是 ,求出正四棱錐的體積,得到正八面體的體積,得到比值.

解:設正方體的棱長是1,

構成的八面體可以看作是由兩個正四棱錐組成,

以上面一個正四棱錐為例,

它的高等于正方體棱長的一半,

正四棱錐的底面邊長根據勾股定理可知是 ,

∴這個正四棱錐的體積是

∴構成的八面體的體積是2;

∴八面體的體積是V1,正方體體積是V2,V1V216

故從正方體內部任取一個點,則該點落在這個正八面體內部的概率為:;

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線焦點為,直線與拋物線交于兩點.到準線的距離之和最小為8.

1)求拋物線方程;

2)若拋物線上一點縱坐標為,直線分別交準線于.求證:以為直徑的圓過焦點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線過點,其參數方程為為參數,),以為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于,兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數方程為t為參數),曲線C2的參數方程為α為參數),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;

(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】.

1)討論上的單調性;

2)令,試證明上有且僅有三個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知定點F1,0),點Ax軸的非正半軸上運動,點By軸上運動,滿足0,A關于點B的對稱點為M,設點M的軌跡為曲線C.

1)求C的方程;

2)已知點G3,﹣2),動直線xtt3)與C相交于PQ兩點,求過GP,Q三點的圓在直線y=﹣2上截得的弦長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經常與齊國眾公子賽馬,孫臏發(fā)現田忌的馬和其他人的馬相差并不遠,都分為上、中、下三等.于是孫臏給田忌將軍獻策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設田忌的各等級馬與某公子的各等級馬進行一場比賽,田忌獲勝的概率如下表所示:

比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.

1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;

2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000,即勝利者贏得對方1000,每月比賽一次,求田忌一年賽馬獲利的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點F是拋物線的焦點,若點在拋物線C上,且

1)求拋物線C的方程;

2)動直線與拋物線C相交于兩點,問:在x軸上是否存在定點(其中),使得x軸平分?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定數列.,該數列前的最小值記為,后的最大值記為,令.

1)設數列21,6,3,寫出,,的值;

2)設是等比數列,公比,且,證明:是等比數列;

3)設是公差大于0的等差數列,且,證明:是等差數列.

查看答案和解析>>

同步練習冊答案