20.若函數(shù)y=$\sqrt{a{x}^{2}-2ax+3}$定義域為實數(shù)集R,則實數(shù)a的取值范圍是[0,3].

分析 根據(jù)二次根式的性質(zhì)通過討論a的范圍判斷即可.

解答 解:由題意得:a=0時,成立,
a≠0時,$\left\{\begin{array}{l}{a>0}\\{{4a}^{2}-12a≤0}\end{array}\right.$,
解得:0<a≤3,
故答案為:[0,3].

點評 本題考查了二次根式以及二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)命題p:函數(shù)$f(x)=lg(a{x^2}-x+\frac{a}{16})$的定義域為R;命題q:3x-9x<a對一切的實數(shù)x恒成立,如果命題“p且q”為假命題,則實數(shù)a的取值范圍是( 。
A.a<2B.a≤2C.a≥2D.a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}滿足a1=2,an+1=2an-n+1,n∈N*
(1)證明:數(shù)列{an-n}為等比數(shù)列,并求{an}的通項公式;
(2)若數(shù)列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+1)}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(1-x)^{3},x<1}\\{(x-1)^{3},x≥1}\end{array}\right.$,若關(guān)于x的不等式f(x2-2x+2)<f(1-a2x2)的解集中有且僅有三個整數(shù),則實數(shù)a的取值范圍是(  )
A.[-$\frac{3}{4}$,-$\frac{2}{3}$)∪($\frac{2}{3}$,$\frac{3}{4}$]B.($\frac{2}{3}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,-$\frac{1}{2}$)∪($\frac{1}{2}$,$\frac{3}{4}$]D.[-$\frac{4}{5}$,-$\frac{3}{4}$)∪($\frac{3}{4}$,$\frac{4}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{x^2}$.
(1)判斷并用定義證明函數(shù)的奇偶性;
(2)判斷并用定義證明函數(shù)在(-∞,0)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等比數(shù)列{an}中,an>0,a1和a99為方程x2-10x+16=0的兩根,則a20•a50•a80的值為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知g(x)=sin2x的圖象,要得到f(x)=sin(2x-$\frac{π}{4}$),只需將g(x)的圖象( 。
A.向右平移$\frac{π}{8}$個單位B.向左平移$\frac{π}{8}$個單位
C.向右平移$\frac{π}{4}$個單位D.向左平移$\frac{π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$與x=1時都取得極值.
(Ⅰ) 求a,b的值;
(Ⅱ) 函數(shù)f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)隨機變量X的概率分布表如下:
X1234
P$\frac{1}{4}$a$\frac{3}{8}$b
若E(X)=2.5,則a-b的值為0.

查看答案和解析>>

同步練習(xí)冊答案