若a,b,l表示三條不同的直線(xiàn),α,β表示兩個(gè)不同的平面,給出如下四組命題:
①“直線(xiàn)a,b為異面直線(xiàn)”的充分非必要條件是“直線(xiàn)a,b不相交”;
②“l(fā)⊥α”的充要條件是“直線(xiàn)l垂直于平面α內(nèi)的無(wú)數(shù)多條直線(xiàn)”;
③“l(fā)α”的充分非必要條件是“直線(xiàn)l上存在兩點(diǎn)到平面α的距離相等”;
④“αβ”的必要非充分條件是“存在l?α,m?α且lβ,mβ”.
其中真命題是( 。
A.④B.③④C.①②D.②
“直線(xiàn)a、b為異面直線(xiàn)”?“直線(xiàn)a、b不相交”為真命題,
“直線(xiàn)a、b不相交”?“直線(xiàn)a、b為異面直線(xiàn)”為假命題
故:“直線(xiàn)a、b為異面直線(xiàn)”的必要不充分條件是:直線(xiàn)a、b不相交,即①錯(cuò)誤;
根據(jù)線(xiàn)面垂直的定義,得②不正確;
lα”的必要非充分條件是“直線(xiàn)l上存在兩點(diǎn)到平面α的距離相等”;故③不正確
根據(jù)面面平行的判定和性質(zhì)知④正確
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、已知a,b,l表示三條不同的直線(xiàn),α,β,γ表示三個(gè)不同平面,有下列四個(gè)命題:①若α∩β=a,β∩γ=b且a∥b,則α∥γ;②若a、b相交且都在α、β外,a∥α,a∥β,b∥α,b∥β,則α∥β;③若a⊥β,α∩β=a,b?β,a⊥b,則b⊥α;④若a?α,b?β,α∩β=m,l⊥a,l⊥b,則l⊥m.其中正確的是
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•湖北模擬)若a,b,l表示三條不同的直線(xiàn),α,β表示兩個(gè)不同的平面,給出如下四組命題:
①“直線(xiàn)a,b為異面直線(xiàn)”的充分非必要條件是“直線(xiàn)a,b不相交”;
②“l(fā)⊥α”的充要條件是“直線(xiàn)l垂直于平面α內(nèi)的無(wú)數(shù)多條直線(xiàn)”;
③“l(fā)∥α”的充分非必要條件是“直線(xiàn)l上存在兩點(diǎn)到平面α的距離相等”;
④“α∥β”的必要非充分條件是“存在l?α,m?α且l∥β,m∥β”.
其中真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若a,b,l表示三條不同的直線(xiàn),α,β表示兩個(gè)不同的平面,給出如下四組命題:
①“直線(xiàn)a,b為異面直線(xiàn)”的充分非必要條件是“直線(xiàn)a,b不相交”;
②“l(fā)⊥α”的充要條件是“直線(xiàn)l垂直于平面α內(nèi)的無(wú)數(shù)多條直線(xiàn)”;
③“l(fā)∥α”的充分非必要條件是“直線(xiàn)l上存在兩點(diǎn)到平面α的距離相等”;
④“α∥β”的必要非充分條件是“存在l?α,m?α且l∥β,m∥β”.
其中真命題是


  1. A.
  2. B.
    ③④
  3. C.
    ①②
  4. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年湖北省“鄂南高中、黃石二中、華師一附中、荊州中學(xué)、孝感高中、襄樊四中、襄樊五中、黃岡中學(xué)”八校高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若a,b,l表示三條不同的直線(xiàn),α,β表示兩個(gè)不同的平面,給出如下四組命題:
①“直線(xiàn)a,b為異面直線(xiàn)”的充分非必要條件是“直線(xiàn)a,b不相交”;
②“l(fā)⊥α”的充要條件是“直線(xiàn)l垂直于平面α內(nèi)的無(wú)數(shù)多條直線(xiàn)”;
③“l(fā)∥α”的充分非必要條件是“直線(xiàn)l上存在兩點(diǎn)到平面α的距離相等”;
④“α∥β”的必要非充分條件是“存在l?α,m?α且l∥β,m∥β”.
其中真命題是( )
A.④
B.③④
C.①②
D.②

查看答案和解析>>

同步練習(xí)冊(cè)答案