【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線的斜率;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)函數(shù)有極值時(shí),若對
,
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1) (2)見解析(3)
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1)的值即可;
(2)求出函數(shù)的導(dǎo)數(shù),討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(3)問題轉(zhuǎn)化為, 設(shè)h(x)=x-1-lnx,根據(jù)函數(shù)單調(diào)性求出h(x)的最小值,從而求出a的范圍即可.
試題解析:
(1)當(dāng)時(shí),
,∴
.
(2) ,
令,
①當(dāng)時(shí),
,
,即
,函數(shù)
在
上單調(diào)遞增.
②當(dāng)時(shí),
,令
,則
,
在和
上,
,函數(shù)
單調(diào)遞增;
在上,
函數(shù)
單調(diào)遞減.
(3)由(1)可知,當(dāng)時(shí),函數(shù)
在
上有極值.
可化為
,
∵,∴
,
設(shè),則
,
當(dāng)時(shí),
,函數(shù)
單調(diào)遞減,當(dāng)
時(shí),
,函數(shù)
單調(diào)遞增,
∴當(dāng),
,∴
,
所以.
又∵,∴
,即
的取值范圍是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.已知函數(shù).
(1)求過點(diǎn)的
圖象的切線方程;
(2)若函數(shù)存在兩個(gè)極值點(diǎn)
,
,求
的取值范圍;
(3)當(dāng)時(shí),均有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,頂點(diǎn)A(3,7),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是
.
(1)求點(diǎn)A關(guān)于直線CD的對稱點(diǎn)的坐標(biāo);
(2)求頂點(diǎn)B、C的坐標(biāo);
(3)過A作直線,使B,C兩點(diǎn)到
的距離相等,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中 ,
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(ⅰ)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
(ⅱ)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù),
,……,
,其回歸線
的斜率和截距的最小二乘估計(jì)分別為:
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對
恒成立,求實(shí)數(shù)
的取值范圍;
(2)已知關(guān)于的方程
有兩個(gè)實(shí)根
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張經(jīng)營某一消費(fèi)品專賣店,已知該消費(fèi)品的進(jìn)價(jià)為每件40元,該店每月銷售量(百件)與銷售單價(jià)x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.
(1)把y表示為x的函數(shù);
(2)當(dāng)銷售價(jià)為每件50元時(shí),該店正好收支平衡(即利潤為零),求該店的職工人數(shù);
(3)若該店只有20名職工,問銷售單價(jià)定為多少元時(shí),該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線是以原點(diǎn)O為中心、
為焦點(diǎn)的橢圓的一部分,曲線
是以O為頂點(diǎn)、
為焦點(diǎn)的拋物線的一部分,A是曲線
和
的交點(diǎn)且
為鈍角,若
,
.
(1)求曲線和
的方程;
(2)過作一條與
軸不垂直的直線,分別與曲線
依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問
是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com