(本題滿分12分)
把邊長為的等邊三角形鐵皮剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的正三棱柱形容器(不計(jì)接縫),設(shè)容器的高為,容積為.

(Ⅰ)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當(dāng)x為多少時,容器的容積最大?并求出最大容積.

(Ⅰ),定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/0/1b5vc4.png" style="vertical-align:middle;" />。(Ⅱ)容器高為時,容器的容積最大為.

解析試題分析:(Ⅰ)因?yàn)槿萜鞯母邽閤,則做成的正三棱柱形容器的底邊長為    ----2分.
   .            ---------4分
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/0/1b5vc4.png" style="vertical-align:middle;" />.         --------- 5分
(Ⅱ)實(shí)際問題歸結(jié)為求函數(shù)在區(qū)間上的最大值點(diǎn).
先求的極值點(diǎn).
在開區(qū)間內(nèi),-----------6分
,即令,解得.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bd/d/1yauj3.png" style="vertical-align:middle;" />在區(qū)間內(nèi),可能是極值點(diǎn). 當(dāng)時,;
當(dāng)時,.            ------------8分
因此是極大值點(diǎn),且在區(qū)間內(nèi),是唯一的極值點(diǎn),
所以的最大值點(diǎn),并且最大值   
即當(dāng)正三棱柱形容器高為時,容器的容積最大為.----------12分
考點(diǎn):函數(shù)模型的實(shí)際應(yīng)用;利用導(dǎo)數(shù)研究函數(shù)的極值和最值。
點(diǎn)評:本題主要考查的知識點(diǎn)是函數(shù)模型的選擇與應(yīng)用,其中解答本題的關(guān)鍵是根據(jù)已知求出棱柱的底面面積和高,進(jìn)而求出函數(shù)的解析式,建立數(shù)學(xué)模型.求解析式的時候,要記得求函數(shù)的定義域。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù)
(I)求的值;
(II)求的取值范圍;
(III)若上恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)f (x)=-ax3x2+(a-1)x (x>0),(aÎR).
(Ⅰ)當(dāng)0<a時,討論f (x)的單調(diào)性;
(Ⅱ)若f (x)在區(qū)間(a, a+1)上不具有單調(diào)性,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/8/1dyvw4.png" style="vertical-align:middle;" />,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過點(diǎn)分別作直線軸的垂線,垂足分別為

(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且處取得極值.
(1)求的值;
(2)若當(dāng)時,恒成立,求的取值范圍;
(3)對任意的是否恒成立?如果成立,給出證明,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)問a為何值時,函數(shù)的最小值是-4。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證: 當(dāng)時,有
(Ⅲ)設(shè),當(dāng)時,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),求使成立的的取值范圍。(10分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)已知函數(shù),.
(1)用定義證明:不論為何實(shí)數(shù)上為增函數(shù);
(2)若為奇函數(shù),求的值;
(3)在(2)的條件下,求在區(qū)間[1,5]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案