如圖,在底面是矩形的四棱錐中,,.

  (1)求證:平面;

  (2)若的中點,求異面直線所成角的余弦值;

  (3)在上是否存在一點,使得到平面的距離為1?若存在,求出,若不存在,請說明理由。(10分)

 

 

【答案】

 

證明:(1)所以,而,故平面平面。                                 (3分)

        (2)取的中點,連接,則,故為異面直線所成的角或其補角。                                         (4分)

   在三角形中,,,由余弦定理得:

               (6分)

         (3)因為平面平面,且交線為,點到平面的距離小于1,故在上存在一點,使得到平面的距離為1。       (8分)       

具體找法:在平面中,以為圓心,1為半徑作圓,過做圓的切線與的交點便是,。                                              (10分)

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點.
(1)求證:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.
(Ⅰ)求證:平面PDC⊥平面PAD;
(Ⅱ)在BC邊上是否存在一點M,使得D點到平面PAM的距離為2,若存在,求BM的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•通州區(qū)一模)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD,E、F分別是PC、PD的中點,求證:
(Ⅰ)EF∥平面PAB;
(Ⅱ)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中點
(1)求證:平面PDC⊥平面PAD;
(2)求三棱錐P-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥面ABCD,PA=AB=1,BC=2.
(1)若E為PD的中點,求異面直線AE與PC所成角的余弦值;
(2)在BC上是否存在一點G,使得D到平面PAG的距離為1?若存在,求出BG;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案