【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.
(1)求橢圓的方程;
(2)經(jīng)過點(diǎn)作直線,交橢圓于,兩點(diǎn).如果恰好是線段的中點(diǎn),求直線的方程.
【答案】(1);(2).
【解析】
(1)根據(jù)題意,由橢圓的幾何性質(zhì)分析可得a、b的值,將a、b的值代入橢圓方程即可得答案;
(2)根據(jù)題意,設(shè)直線l的方程為:,將直線與橢圓的方程聯(lián)立,分析可得,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系以及中點(diǎn)坐標(biāo)公式分析可得,解可得k的值,代入直線方程即可得答案.
(1)根據(jù)題意,橢圓的長軸長為4,且短軸長是長軸長的一半.
即,則,
,則,
故橢圓的方程為;
(2)由(1)得故橢圓的方程為:,設(shè)直線l的方程為:,
將直線代入橢圓方程,得,
設(shè),,則,
恰好是線段的中點(diǎn),,即,
解得,
則直線的方程為,變形可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根、(),稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知為給定實(shí)數(shù),求的表達(dá)式;
(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調(diào)性,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當(dāng)a=1時(shí),求f(x)≤3的解集;
(2)當(dāng)x∈[1,2]時(shí),f(x)≤3恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(1,2),根據(jù)下列條件分別求出直線l的方程(斜截式方程):
(1)直線l與垂直;
(2)l在x軸、y軸上的截距之和等于0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:
①在區(qū)間內(nèi)單調(diào)遞增;
②在區(qū)間內(nèi)單調(diào)遞減;
③在區(qū)間內(nèi)單調(diào)遞增;
④是極小值點(diǎn);
⑤是極大值點(diǎn).
其中正確的是( )
A. ③⑤B. ②③C. ①④⑤D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若k≠0,試討論函數(shù)f(x)的奇偶性,并說明理由;
(2)已知f(x)在(﹣∞,0]上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面,且是邊長為2的等邊三角形,.
(1)若是線段的中點(diǎn),證明:直線面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;
(2)若三角形有一個(gè)內(nèi)角為,周長為定值,求面積的最大值;
(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),
∴
,
而,,,則,
但是,其中等號(hào)成立的條件是,于是與矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請(qǐng)你給出正確的答案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com