【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.

(1)求橢圓的方程;

(2)經(jīng)過點(diǎn)作直線,交橢圓于,兩點(diǎn).如果恰好是線段的中點(diǎn),求直線的方程.

【答案】(1);(2)

【解析】

1)根據(jù)題意,由橢圓的幾何性質(zhì)分析可得a、b的值,將a、b的值代入橢圓方程即可得答案;

2)根據(jù)題意,設(shè)直線l的方程為:,將直線與橢圓的方程聯(lián)立,分析可得,設(shè)Ax1y1),Bx2y2),由根與系數(shù)的關(guān)系以及中點(diǎn)坐標(biāo)公式分析可得,解可得k的值,代入直線方程即可得答案.

(1)根據(jù)題意,橢圓的長軸長為4,且短軸長是長軸長的一半.

,則

,則,

故橢圓的方程為

(2)由(1)得故橢圓的方程為:,設(shè)直線l的方程為:,

將直線代入橢圓方程,得,

設(shè),,則,

恰好是線段的中點(diǎn),,即,

解得

則直線的方程為,變形可得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根、),稱為的特征根.

(1)討論函數(shù)的奇偶性,并說明理由;

(2)已知為給定實(shí)數(shù),求的表達(dá)式;

(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù)的單調(diào)性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.

(1)當(dāng)a=1時(shí),求f(x)≤3的解集;

(2)當(dāng)x[1,2]時(shí),f(x)≤3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)P1,2),根據(jù)下列條件分別求出直線l的方程(斜截式方程):

1)直線l垂直;

2lx軸、y軸上的截距之和等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:

①在區(qū)間內(nèi)單調(diào)遞增;

②在區(qū)間內(nèi)單調(diào)遞減;

③在區(qū)間內(nèi)單調(diào)遞增;

是極小值點(diǎn);

是極大值點(diǎn).

其中正確的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若k≠0,試討論函數(shù)fx)的奇偶性,并說明理由;

2)已知fx)在(﹣,0]上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面,且是邊長為2的等邊三角形,

(1)若是線段的中點(diǎn),證明:直線;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;

(2)若三角形有一個(gè)內(nèi)角為,周長為定值,求面積的最大值;

(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),

,,,則,

但是,其中等號(hào)成立的條件是,于是矛盾,

所以,此三角形的面積不存在最大值.

以上解答是否正確?若不正確,請(qǐng)你給出正確的答案.

查看答案和解析>>

同步練習(xí)冊(cè)答案