【題目】某工廠的檢驗(yàn)員為了檢測(cè)生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了個(gè)進(jìn)行測(cè)量,根據(jù)所測(cè)量的數(shù)據(jù)畫出頻率分布直方圖如下:
如果:尺寸數(shù)據(jù)在內(nèi)的零件為合格品,頻率作為概率.
(1)從產(chǎn)品中隨機(jī)抽取件,合格品的個(gè)數(shù)為,求的分布列與期望:
(2)為了提高產(chǎn)品合格率,現(xiàn)提出,兩種不同的改進(jìn)方案進(jìn)行試驗(yàn),若按方案進(jìn)行試驗(yàn)后,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是:若按方案試驗(yàn)后,抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是,你會(huì)選擇哪個(gè)改進(jìn)方案?
【答案】(1)詳見解析(2)應(yīng)選擇方案,詳見解析
【解析】
(1) 先由頻率分布直方圖,可以推出產(chǎn)品為合格品的概率,再求出隨機(jī)變量的分布列及期望;
(2) 方案隨機(jī)抽取產(chǎn)品與方案隨機(jī)抽取產(chǎn)品都為相互獨(dú)立事件,服從二項(xiàng)分布,由不合格個(gè)數(shù)的期望分別求出不合格的概率即可得出較好的方案.
(1)由直方圖可知抽出產(chǎn)品為合格品的率為
即推出產(chǎn)品為合格品的概率為,
從產(chǎn)品中隨機(jī)抽取件.合格品的個(gè)數(shù)的所有可能取值為0,1,2,3,4,
且,,,
,.
所以的分布判為
的數(shù)學(xué)期望.
(2)方案隨機(jī)抽取產(chǎn)品不合格的概率是,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù):
按方案隨機(jī)抽取產(chǎn)品不合格的概率是,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù)
依題意,,
解得,
因?yàn)?/span>,
所以應(yīng)選擇方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,則( )
A.函數(shù)為奇函數(shù)
B.函數(shù)在上單調(diào)遞增
C.若,則的最小值為
D.函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四棱錐中,底面是邊長(zhǎng)為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大。
(Ⅲ)線段上是否存在點(diǎn),使得直線與平面所成角為,若存在,求線段的長(zhǎng)度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)對(duì)于任意,,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電信運(yùn)營(yíng)公司為響應(yīng)國(guó)家5G網(wǎng)絡(luò)建設(shè)政策,擬實(shí)行5G網(wǎng)絡(luò)流量階梯定價(jià).每人月用流量中不超過(一種流量計(jì)算單位)的部分按2元收費(fèi);超出的部分按4元收費(fèi).從用戶群中隨機(jī)調(diào)查了10000位用戶,獲得了他們某月的流量使用數(shù)據(jù).整理得到如下的頻率分布直方圖:
(1)若為整數(shù),依據(jù)本次調(diào)查,為使80以上用戶在該月的流量?jī)r(jià)格為2元,至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),試估計(jì)用戶該月的人均流量費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為(其中為自然對(duì)數(shù)的底數(shù)),是的導(dǎo)函數(shù)。
(1)求的值;
(2)任取兩個(gè)不等的正數(shù),且,若存在正數(shù),使得成立。求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知由n(n∈N*)個(gè)正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對(duì)于任意不大于SA的正整數(shù)m,均存在集合A的一個(gè)子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時(shí)an的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為1的正三角形,點(diǎn)P在所在的平面內(nèi),且(a為常數(shù)),下列結(jié)論中正確的是( )
A.當(dāng)時(shí),滿足條件的點(diǎn)P有且只有一個(gè)
B.當(dāng)時(shí),滿足條件的點(diǎn)P有三個(gè)
C.當(dāng)時(shí),滿足條件的點(diǎn)P有無(wú)數(shù)個(gè)
D.當(dāng)a為任意正實(shí)數(shù)時(shí),滿足條件的點(diǎn)總是有限個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子設(shè)備工廠生產(chǎn)一種電子元件,質(zhì)量控制工程師要在產(chǎn)品出廠前將次品檢出.估計(jì)這個(gè)廠生產(chǎn)的電子元件的次品率為0.2%,且電子元件是否為次品相互獨(dú)立,一般的檢測(cè)流程是:先把個(gè)電子元件串聯(lián)起來(lái)成組進(jìn)行檢驗(yàn),若檢測(cè)通過,則全部為正品;若檢測(cè)不通過,則至少有一個(gè)次品,再逐一檢測(cè),直到把所有的次品找出,若檢驗(yàn)一個(gè)電子元件的花費(fèi)為5分錢,檢驗(yàn)一組(個(gè))電子元件的花費(fèi)為分錢.
(1)當(dāng)時(shí),估算一組待檢元件中有次品的概率;
(2)設(shè)每個(gè)電子元件檢測(cè)費(fèi)用的期望為,求的表達(dá)式;
(3)試估計(jì)的值,使每個(gè)電子元件的檢測(cè)費(fèi)用的期望最小.(提示:用進(jìn)行估算)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com