設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2) 若,恒成立,求的范圍.
(3)求證:
(1) 0. (2) .
(3) 結(jié)合(2)時(shí),成立.令
得到,
累加可得.
【解析】
試題分析:(1)求導(dǎo)數(shù),并由得到的值; (2)恒成立問題,往往轉(zhuǎn)化成求函數(shù)的最值問題.本題中設(shè),即轉(zhuǎn)化成.利用導(dǎo)數(shù)研究函數(shù)的最值可得.
(3) 結(jié)合(2)時(shí),成立.令得到,
累加可得.
試題解析:(1) 2分
由題設(shè),
,. 4分
(2) ,,,即
設(shè),即.
6分
①若,,這與題設(shè)矛盾. 8分
②若方程的判別式
當(dāng),即時(shí),.在上單調(diào)遞減,
,即不等式成立. 9分
當(dāng)時(shí),方程,其根,,
當(dāng),單調(diào)遞增,,與題設(shè)矛盾.
綜上所述, . 10分
(3) 由(2)知,當(dāng)時(shí), 時(shí),成立.
不妨令
所以,
11分
12分
累加可得
14分
考點(diǎn):導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),利用導(dǎo)數(shù)證明不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆江蘇南通第三中學(xué)高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
本題滿分16分)
設(shè)函數(shù)曲線在點(diǎn)處的切線方程為 .
(1)求 的解析式;
(2)證明:曲線 上任一點(diǎn)處的切線與直線 及直線 所圍成的三角形的面積是一個(gè)定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),曲線在點(diǎn)處的切線的斜率為2,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三11月月考理科數(shù)學(xué)試卷 題型:選擇題
設(shè)函數(shù)曲線在點(diǎn)處的切線方程為則曲線在點(diǎn)處切線的斜率為( )
A、4 B、 C、2 D、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆天津市高三第一次月考理科數(shù)學(xué)試卷 題型:解答題
已知是二次函數(shù),是它的導(dǎo)函數(shù),且對任意的恒成立
(Ⅰ)求的解析式;
(Ⅱ)設(shè),曲線在點(diǎn)處的切線為與坐標(biāo)軸圍成的三角形面積為,求的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com