8.圓x2+(y+1)2=3繞直線kx-y-1=0旋轉一周所得的幾何體的表面積為12π.

分析 直線恒過圓心,推知旋轉體為球,求出球的半徑,可求球的表面積.

解答 解:顯然直線過圓心(0,-1),故旋轉一周所得幾何體為球,球的半徑為$\sqrt{3}$,
∴S=4πR2=4π•3=12π.
故答案為12π.

點評 本題考查旋轉體的知識,直線與圓的位置關系,考查計算能力,空間想象能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知拋物線C:y2=4x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{FP}=5\overrightarrow{FQ}$,則|QF|=( 。
A.$\frac{7}{2}$B.$\frac{8}{5}$C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.當0<a<1時,不等式${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$的解集是($\frac{1}{2}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知a>b>0,則方程a2x2+b2y2=1與ax+by2=0的曲線在同一坐標系中大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.運行下面的程序中,若輸入x的值為5,則輸出的y的值為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,則輸出S的值為( 。
A.$\frac{tan2017°-tan1949°}{tan1°}$-67B.$\frac{tan2016°-tan1949°}{tan1°}$-67
C.$\frac{tan2017°-tan1949°}{tan1°}$-68D.$\frac{tan2016°-tan1949°}{tan1°}$-68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,以AC=2為直徑的⊙B,點E為$\widehat{AC}$的中點,點D在直徑AC延長線上,CD=1,F(xiàn)C⊥平面BED,F(xiàn)C=2.
(Ⅰ)證明:EB⊥FD;
(Ⅱ)求點B到平面FED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在等差數(shù)列{an}中,an>0,且a1+a2+…+a10=30,則a5+a6的值( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知A,B兩鎮(zhèn)分別位于東西湖岸MN的A處和湖中小島的B處,點C在A的正西方向1km處,tan∠BAN=$\frac{3}{4}$,∠BCN=$\frac{π}{4}$,現(xiàn)計劃鋪設一條電纜聯(lián)通A,B兩鎮(zhèn),有兩種鋪設方案:①沿線段AB在水下鋪設;②在湖岸MN上選一點P,先沿線段AP在地下鋪設,再沿線段PB在水下鋪設,預算地下、水下的電纜鋪設費用分別為2萬元∕km、4萬元∕km.
(1)求A,B兩鎮(zhèn)間的距離;
(2)應該如何鋪設,使總鋪設費用最低?

查看答案和解析>>

同步練習冊答案