直線
x=5+tsin25°
y=-3-tcos25°
(t是參數(shù))傾斜角為(  )
A、25°B、65°
C、155°D、115°
考點:直線的參數(shù)方程
專題:坐標系和參數(shù)方程
分析:由直線
x=5+tsin25°
y=-3-tcos25°
,消去參數(shù)t化為y+3=-tan65°(x-5),即可得出.
解答: 解:直線
x=5+tsin25°
y=-3-tcos25°
,消去參數(shù)t化為y+3=-tan65°(x-5),
∴直線的傾斜角為180°-65°=115°.
故選:D.
點評:本題考查了直線的參數(shù)方程、傾斜角與斜率的關(guān)系,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設f(x)和g(x)是R上的奇函數(shù),且g(x)≠0,當x<0時,f′(x)g(x)-f(x)g′(x)>0,且f(2)=0,則不等式
f(x)
g(x)
<0的解集是( 。
A、(-2,0)∪(2,+∞)
B、(-2,0)∪(0,2)
C、(-∞,-2)∪(2,+∞)
D、(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲從學校乘車回家,途中有3個交通崗,假設在各交通崗遇紅燈的事件是相互獨立的,并且概率都是
2
5
,則甲回家途中遇紅燈次數(shù)的期望為( 。
A、
6
5
B、
8
5
C、
9
5
D、
7
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列求導運算正確的是( 。
A、(x+
1
x
)′=1+
1
x2
B、(3x)′=3xlog3e
C、(log3x)′=
1
xln3
D、(x2cosx)′=-2sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 
2
1
x-1dx=( 。
A、ln2-1
B、ln2
C、
3
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M滿足{1,2}⊆M⊆{1,2,3,4,5},這樣的集合M有( 。﹤.
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x∈R||x+3|+|x-4|≤9},B={x∈R|x=4t+
1
t
-6},則集合A∪B=(  )
A、{x|x≥-4}
B、{x|x≥-1或x≤5}
C、{x|x≥-2}
D、{x|x≥-4或x≤-10}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩個集合的運算“△”如下:A△B={x|x∈A且x∉B},若A={1,2,3,5},B={1,3,4,7},則集合B△A中所有元素的和為( 。
A、7B、10C、11D、15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=-an-(
1
2
n-1+2(n為正整數(shù)).
(1)令bn=2nan,求證數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)令cn=
n+1
n
an,Tn=c1+c2+…+cn.是否存在最小的正整數(shù)m,使得對于n∈N×都有Tn<2m-4恒成立,若存在,求出m的值;不存在,請說明理由.

查看答案和解析>>

同步練習冊答案