對于函數(shù)f(x)=,給出下列四個(gè)命題:
①該函數(shù)是以π為最小正周期的周期函數(shù);
②當(dāng)且僅當(dāng)x=π+kπ(k∈Z)時(shí),該函數(shù)取得最小值-1;
③該函數(shù)的圖象關(guān)于x=+2kπ(k∈Z)對稱;
④當(dāng)且僅當(dāng)2kπ<x<+2kπ(k∈Z)時(shí),0<f(x)≤
其中正確命題的序號(hào)是    .(請將所有正確命題的序號(hào)都填上)
【答案】分析:由題意作出此分段函數(shù)的圖象,由圖象研究該函數(shù)的性質(zhì),依據(jù)這些性質(zhì)判斷四個(gè)命題的真假,此函數(shù)取自變量相同時(shí)函數(shù)值小的那一個(gè),由此可順利作出函數(shù)圖象.
解答:解:由題意函數(shù)f(x)=,畫出f(x)在x∈[0,2π]上的圖象.
由圖象知,函數(shù)f(x)的最小正周期為2π,
在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)時(shí),該函數(shù)都取得最小值-1,故①②錯(cuò)誤,
由圖象知,函數(shù)圖象關(guān)于直線x=+2kπ(k∈Z)對稱,
在2kπ<x<+2kπ(k∈Z)時(shí),0<f(x)≤,故③④正確.
故答案為   ③④
點(diǎn)評:本題考點(diǎn)是三角函數(shù)的最值,本題是函數(shù)圖象的運(yùn)用,由函數(shù)的圖象研究函數(shù)的性質(zhì),并以由圖象研究出的結(jié)論判斷和函數(shù)有關(guān)的命題的真假.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2);②f(x1•x2)=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④f(
x1+x2
2
)<
f(x1)+f(x2)
2

當(dāng)f(x)=2-x時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是
 
寫出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),定義域?yàn)镈,若存在x0∈D使f(x0)=x0,則稱(x0,x0)為f(x)的圖象上的不動(dòng)點(diǎn). 由此,函數(shù)f(x)=
9x-5x+3
的圖象上不動(dòng)點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2)②f(x1)f(x2)=f(x1)+f(x2)③
f(x1)-f(x2)
x1-x2
<0

f(
x1+x2
2
)<
f(x1)+f(x2)
2
,當(dāng)f(x)=log
1
2
x
時(shí),上述結(jié)論中正確的序號(hào)是
③④
③④
(寫出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn),已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)當(dāng)a=1,b=-2求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解關(guān)于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x3cos3(x+
π
6
),下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案