已知函數(shù)f(x)=a2x+ax-6,其中a>0且a≠1.
(1)當a=2時,求函數(shù)f(x)的零點;
(2)若x∈[1,2]時,函數(shù)f(x)的最大值為6,求a的值.

解:(1)當a=2時,f(x)=22x+2x-6…1分
由f(x)=0得22x+2x-6=0,即(2x-2)(2x+3)=0…2分
∴2x=2或2x=-3(舍去) …4分
∴x=1…5分
∴函數(shù)f(x)的零點是1…6分
(2)令ax=t,則g(t)=t2+t-6
①當0<a<1時
∵函數(shù)t=ax在R上是減函數(shù),且1≤x≤2,∴a2≤t≤a…7分
∵g(t)=t2+t-6在上單調(diào)遞增
∴f(x)max=g(t)max=g(a)=6
∴a2+a-6=6,即a2+a-12=0…8分
解得a=3(舍去)或a=-4(舍去) …9分
②當a>1時
∵函數(shù)t=ax在R上是增函數(shù),且1≤x≤2,∴a≤t≤a2…10分
∵g(t)=t2+t-6在上單調(diào)遞增

∴(a22+a2-6=6,即(a22+a2-12=0…11分
解得a2=3或a2=-4(舍去) …12分
…13分
綜合①②可知,. …14分.
分析:(1)求出f(x)=0的根,即可求函數(shù)f(x)的零點;
(2)換元,再進行分類討論,利用函數(shù)的單調(diào)性,函數(shù)f(x)的最大值為6,即可求a的值.
點評:本題考查函數(shù)的零點,考查分類討論的數(shù)學思想,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案