2.在條件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,下,目標函數(shù)z=ax+by(a>0,b>0)的最大值為40,則$\frac{5}{a}+\frac{1}$的最小值是$\frac{9}{4}$.

分析 由約束條件作差可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)可得即$\frac{a}{5}+\frac{4}=1$.再由$\frac{5}{a}+\frac{1}$=($\frac{5}{a}+\frac{1}$),展開后利用基本不等式求最值.

解答 解:由約束條件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0}\\{y≥0}\end{array}\right.$作差可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{2x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得A(8,10),
由z=ax+by,得$y=-\frac{a}x+\frac{z}$,
由圖可知,當直線$y=-\frac{a}x+\frac{z}$過A時,直線在y軸上的截距最大,z有最大值為8a+10b=40,
即$\frac{a}{5}+\frac{4}=1$.
∴$\frac{5}{a}+\frac{1}$=($\frac{5}{a}+\frac{1}$)($\frac{a}{5}+\frac{4}$)=$\frac{5}{4}+(\frac{5b}{4a}+\frac{a}{5b})≥\frac{5}{4}+2\sqrt{\frac{5b}{4a}•\frac{a}{5b}}=\frac{5}{4}+2×\frac{1}{2}=\frac{9}{4}$.
當且僅當$\frac{5b}{4a}=\frac{a}{5b}$時上式等號成立.
故答案為:$\frac{9}{4}$.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,訓練了利用基本不等式求最值,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.與y=x為同一函數(shù)的是( 。
A.y=($\sqrt{x}$)2B.y=$\frac{{x}^{2}}{x}$C.y=$\left\{\begin{array}{l}{x,(x>0)}\\{-x,(x<0)}\end{array}\right.$D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖所示,一個空間幾何體的正視圖和左視圖都是邊長為2的正方形,俯視圖是一個直徑為2的圓,那么這個幾何體的體積為(  )
A.B.C.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)$f(x)=\frac{2}{x}$的單調(diào)遞減區(qū)間為( 。
A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,0),(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=$\frac{{{x^2}+2x+a}}{x}$,x∈1,+∞).
(1)當a=$\frac{1}{2}$時,判斷函數(shù)單調(diào)性并證明;
(2)當a=$\frac{1}{2}$時,求函數(shù)f(x)的最小值;
(3)若對任意x∈1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在幾何體EFABCD中,矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,設平面CBF將幾何體EFABCD分成的兩個錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE的值為( 。
A.2:1B.3:1C.4:1D.5:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知不等式ax2+bx-1>0的解集為{x|3<x<4},則實數(shù)a=-$\frac{1}{12}$;函數(shù)y=x2-bx-a的所有零點之和等于$\frac{7}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥底面ABCD,PD=AB,
(1)若E為PA的中點,求異面直線AC與BE所成角的余弦值;
(2)若點F在側棱PC上,二面角F-BD-C的余弦值為$\frac{\sqrt{3}}{3}$,求$\frac{PF}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2+mx+n,且y=f(x+2)的圖象關于y軸對稱,則大小關系正確的是( 。
A.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)B.f(1)<f($\frac{7}{2}$)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)D.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)

查看答案和解析>>

同步練習冊答案