精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x2-2x,g(x)=ax+2,其中a>0.
(Ⅰ)對?x∈[-1,2],有f(x)<g(x)+2成立,求正數a的取值范圍.
(Ⅱ)對?x1∈[-1,2],?x∈[-1,2],使g(x1)=f(x),求正數a的取值范圍.
【答案】分析:(I)根據對?x∈[-1,2],有f(x)<g(x)+2成立,即h(x)=f(x)-g(x)-2=x2-(2+a)x-4<0對任意x∈[-1,2]恒成立,只需成立,解此不等式組即可求得正數a的取值范圍;
(Ⅱ)先求出兩個函數在[-1,2]上的值域分別為A、B,再根據對任意的x1∈[-1,2],存在x∈[-1,2],使g(x1)=f(x),集合A是集合B的子集,并列出不等式,解此不等式組即可求得實數a的取值范圍,注意條件a>0.
解答:解:(I)由題意,h(x)=f(x)-g(x)-2=x2-(2+a)x-4<0對任意x∈[-1,2]恒成立,
只需成立,故0<a<1.
(II)當a>0時,g(x)=ax+2在[-1,2]上的值域A=[2-a,2+2a],
f(x)=x2-2x在[-1,2]上的值域B=[-1,3],
由題意,A⊆B,得
點評:此題是個中檔題.考查函數的值域,難點是題意的理解與轉化,體現了轉化的思想.同時也考查了同學們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案