13.拋物線C:y2=2x的準(zhǔn)線方程是x=-$\frac{1}{2}$,經(jīng)過點(diǎn)P(4,1)的直線l與拋物線C相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則$|{\overrightarrow{AF}}|+|{\overrightarrow{BF}}|$=9.

分析 根據(jù)拋物線的標(biāo)準(zhǔn)方程求得準(zhǔn)線方程和焦點(diǎn)坐標(biāo),利用拋物線的定義把|AF|+|BF|轉(zhuǎn)化為|AM|+|BN|,再轉(zhuǎn)化為2|PK|,從而得出結(jié)論.

解答 解:拋物線C:y2=2x的準(zhǔn)線方程是x=-$\frac{1}{2}$,它的焦點(diǎn)F($\frac{1}{2}$,0).
過A作AM⊥直線l,BN⊥直線l,PK⊥直線l,M、N、K分別為垂足,
則由拋物線的定義可得|AM|+|BN|=|AF|+|BF|.
再根據(jù)P為線段AB的中點(diǎn),$\frac{1}{2}$(|AM|+|BN|)=|PK|=$\frac{9}{2}$,∴|AF|+|BF|=9,
故答案為:$x=-\frac{1}{2};9$.

點(diǎn)評 本題主要考查拋物線的定義性值以及標(biāo)準(zhǔn)方程的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$[x2-2(2a-1)x+8],a∈R,若f(x)在[a,+∞)上為減函數(shù),則a的取值范圍為( 。
A.(-∞,2]B.(-$\frac{4}{3}$,2]C.(-∞,1]D.(-$\frac{4}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不等式(-2x-1)(x-1)(x-2)>0的解集為$(-∞,-\frac{1}{2})∪(1,2)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{log_{\frac{1}{2}}}(-x),x<0\end{array}\right.$,若f(a)-2f(-a)>0,則實(shí)數(shù)a的取值范圍是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=4x2-mx+1在(-∞,-2]上遞減,在[-2,+∞)上遞增,則f(1)=(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.命題“若實(shí)數(shù)a,b滿足a+b<7,則a=2且b=3”的否命題是若實(shí)數(shù)a,b滿足a+b≥7,則a≠2或b≠3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊經(jīng)過點(diǎn)P(4,-3),則sinα+cosα=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù),且a>0).
(1)若f(-1)=0,且f(x)=0有且僅有一個實(shí)數(shù)根,求a,b的值;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)若f(x)為偶函數(shù),設(shè)F(x)=$\left\{\begin{array}{l}{f(x),(x>0)}\\{-f(x),(x<0)}\end{array}\right.$,mn<0,m+n>0,試比較F(m)+F(n)的值與0的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.由0、1、2、3、4、5組成沒有重復(fù)數(shù)字的三位偶數(shù)有(  )
A.720個B.600個C.60個D.52個

查看答案和解析>>

同步練習(xí)冊答案