設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當x=1時,函數(shù)f(x)取得極值,求a的值;
(2)當0<a<
1
2
時,求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)當a=-1時,關(guān)于x的方程2mf(x)=x2(m>0)有唯一實數(shù)解,求實數(shù)m的值.
考點:利用導數(shù)研究函數(shù)的單調(diào)性,利用導數(shù)求閉區(qū)間上函數(shù)的最值
專題:導數(shù)的綜合應用
分析:(1)先求函數(shù)的定義域,然后求出導函數(shù),根據(jù)f(x)在x=1處取得極值,則f'(1)=0,求出a的值,然后驗證即可;
(2)由a的范圍,然后利用導數(shù)研究函數(shù)的單調(diào)性,從而求出函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)研究函數(shù)是單調(diào)性得到函數(shù)的極值點,根據(jù)函數(shù)圖象的變化趨勢,判斷何時方程2mf(x)=x2有唯一實數(shù)解,得到m所滿足的方程,解方程求解m.
解答: 解:(1)f(x)的定義域為(0,+∞),所以f′(x)=
1
x
-a=
1-ax
x
.    …(2分)
因為當x=1時,函數(shù)f(x)取得極值,所以f′(1)=1-a=0,所以a=1.
經(jīng)檢驗,a=1符合題意.(不檢驗不扣分)      …(4分)
(2)f′(x)=
1
x
-a=
1-ax
x
,x>0.
令f′(x)=0得x=
1
a

因為0<a<
1
2
,1≤x≤2,∴0<ax<1,∴1-ax>0,∴f′(x)>0,
∴函數(shù)f(x)在[1,2]上是增函數(shù),
∴當x=2時,f(x)max=f(2)=ln2-2a.
(3)因為方程2mf(x)=x2有唯一實數(shù)解,
所以x2-2mlnx-2mx=0有唯一實數(shù)解,
設(shè)g(x)=x2-2mlnx-2mx,
則g′(x)=
2x2-2mx-2m
x
,令g′(x)=0,x2-mx-m=0.
因為m>0,x>0,所以x1=
m-
m2+4m
2
<0(舍去),x2=
m+
m2+4m
2
,
當x∈(0,x2)時,g′(x)<0,g(x)在(0,x2)上單調(diào)遞減,
當x∈(x2,+∞)時,g′(x)>0,g(x)在(x2,+∞)單調(diào)遞增,
當x=x2時,g(x)取最小值g(x2).                …(10分)
g(x2)=0
g(x2)=0
x
2
2
-2mlnx2-2mx2=0
x
2
2
-mx2-m=0

所以2mlnx2+mx2-m=0,因為m>0,所以2lnx2+x2-1=0(*),
設(shè)函數(shù)h(x)=2lnx+x-1,因為當x>0時,h(x)是增函數(shù),所以h(x)=0至多有一解.
因為h(1)=0,所以方程(*)的解為x2=1,即
m+
m2+4m
2
=1,
解得m=
1
2
.                           …(12分)
點評:本題主要考查了利用導數(shù)研究函數(shù)的極值,以及利用導數(shù)研究函數(shù)在閉區(qū)間上的最值,是一道綜合題,有一定的難度,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合M={x|y=lg
1-x
x
},N={y|y=x2+2x+3},則(∁RM)∩N=( 。
A、{x|10<x<1}
B、{x|x>1}
C、{x|x≥2}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=3x-1,x∈[-1,2]的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2acoskπ•lnx(k∈N*,a∈R,且a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若k=2014,關(guān)于x的方程f(x)=2ax有唯一解,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x≥1
x-y≤0
x+2y≤9
,則z=x+y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x2-2x+b(b∈R),
(Ⅰ)解關(guān)于x的不等式f(x)≥0;
(Ⅱ)當x∈[-1,1]時,恒有f(x)<0,求實數(shù)b的取值范圍;
(Ⅲ)當b=7,不等式f(x)-k(x+1)≥0,對于x∈[0,2]恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD,底面ABCD為梯形,AB∥CD,AD⊥CD,AB=1,PA⊥平面ABCD,PA=AD=DC=2AB,點E是PC中點.
(Ⅰ)求證:BE⊥DC
(Ⅱ)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

連結(jié)正三棱柱的頂點,可以組成
 
個四面體,可以連成
 
對異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{bn}滿足b1+4b2+9b3+…+n2bn=2n-1,則數(shù)列{bn}的通項公式為
 

查看答案和解析>>

同步練習冊答案