如圖,四棱錐中,底面為正方形,,
平面為棱的中點(diǎn).

(1)求證:平面平面;
(2)求二面角的余弦值.
(3)求點(diǎn)到平面的距離.

(1)要證明面面垂直,根據(jù)平面,所以以及得到平面.從而得到證明。
(2)  (3)

解析試題分析:(1)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ef/7/txotu.png" style="vertical-align:middle;" />平面,所以. 2分
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/f6/9/1shtj4.png" style="vertical-align:middle;" />為正方形,所以,
所以平面
所以平面平面.  4分 
(2)解:在平面內(nèi)過作直線
因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/5/s8drs.png" style="vertical-align:middle;" />平面,所以平面
兩兩垂直,建立如圖所示的空間直角坐標(biāo)系
設(shè),則
所以 ,
設(shè)平面的法向量為,則有
所以   取,得
易知平面的法向量為
所以
由圖可知二面角的平面角是鈍角,      
所以二面角的余弦值為.   8分
(3)根據(jù)等體積法可知到平面的距離,則可以利用
 ,那么結(jié)合底面積和高可知          12分
考點(diǎn):二面角和距離
點(diǎn)評:主要是考查了空間中的面面垂直的判定定理和二面角以及點(diǎn)到面的距離的求解,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四棱錐,底面是邊長為的正方形,⊥面,,過點(diǎn),連接
(Ⅰ)求證:;
(Ⅱ)若面交側(cè)棱于點(diǎn),求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)正四棱錐的側(cè)面積為,若

(1)求四棱錐的體積;
(2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面是邊長為2的菱形,.已知 .

(Ⅰ)證明:
(Ⅱ)若的中點(diǎn),求三菱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點(diǎn),(1) 求證:平面。(2) 求二面角 P-BC-A 的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,空間四邊形的對棱、的角,且,平行于的截面分別交、、、、、

(1)求證:四邊形為平行四邊形;
(2)的何處時(shí)截面的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直三棱柱中,

(1)求異面直線 與所成角的大;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐中,的中點(diǎn),,,二面角的大小為

(1)證明:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案