【題目】2018年8月18日,舉世矚目的第18屆亞運(yùn)會(huì)在印尼首都雅加達(dá)舉行,為了豐富亞運(yùn)會(huì)志愿者的業(yè)余生活,同時(shí)鼓勵(lì)更多的有志青年加入志愿者行列,大會(huì)主辦方?jīng)Q定對(duì)150名志愿者組織一次有關(guān)體育運(yùn)動(dòng)的知識(shí)競(jìng)賽(滿(mǎn)分120分)并計(jì)劃對(duì)成績(jī)前15名的志愿者進(jìn)行獎(jiǎng)勵(lì),現(xiàn)將所有志愿者的競(jìng)賽成績(jī)制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問(wèn)題:
(1)求圖中的值;
(2)求志愿者知識(shí)競(jìng)賽的平均成績(jī);
(3)從受獎(jiǎng)勵(lì)的15人中按成績(jī)利用分層抽樣抽取5人,再?gòu)某槿〉?人中,隨機(jī)抽取2人在主會(huì)場(chǎng)服務(wù),求抽取的這2人中其中一人成績(jī)?cè)?/span>分的概率.
【答案】(1)(2)96.8(3)
【解析】
(1)由頻率分布直方圖的性質(zhì)結(jié)合條件即可求解;
(2)每個(gè)小長(zhǎng)方形底邊中點(diǎn)所對(duì)應(yīng)的橫坐標(biāo)乘以該組的頻率,再求和即可求出平均數(shù);
(3)用列舉法先求出從抽取的5人中,隨機(jī)抽取2人所包含的基本事件總數(shù),以及抽取的這2人中其中一人成績(jī)?cè)?/span>分所包含的基本事件個(gè)數(shù),結(jié)合古典概型的概率公式即可求出概率.
(1)由條件及頻率分別直方圖的性質(zhì)可知:
解得
(2)由(1)可知,成績(jī)?cè)?/span>分的有9人,在分的有24人,
在分的有60人,在分的有45人,
在分的有12人,故志愿者知識(shí)競(jìng)賽平均成績(jī)?yōu)?/span>
(3)由(2)可知,受獎(jiǎng)勵(lì)的15人中有三人的成績(jī)是分,其余12人的成績(jī)是分,利用分層抽樣抽取5人,有1人成績(jī)?cè)?/span>分中,4人成績(jī)?cè)?/span>分中.
記成績(jī)是分的1人為,成績(jī)是分的4人為,從這5人中抽取2人去主會(huì)場(chǎng)服務(wù)共有以下10種可能:,,,,,,,,,,
滿(mǎn)足條件的有,,,,共4種,
故所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),g(x)=f(x)﹣3.
(1)判斷并證明函數(shù)g(x)的奇偶性;
(2)判斷并證明函數(shù)g(x)在(1,+∞)上的單調(diào)性;
(3)若f(m2﹣2m+7)≥f(2m2﹣4m+4)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上存在最大值0,求函數(shù)在上的最大值;
(3)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了 100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)査的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱(chēng)為“高消費(fèi)群”.
(1)求的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?
附: (其中樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足Sn=2an-1(n∈N*),數(shù)列{bn}滿(mǎn)足nbn+1-(n+1)bn=n(n+1)(n∈N*),且b1=1.
(1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=(-1)n-1,求數(shù)列{cn}的前n項(xiàng)和T2n;
(3)若dn=an,數(shù)列{dn}的前n項(xiàng)和為Dn,對(duì)任意的n∈N*,都有Dn≤nSn-a,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由無(wú)理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì).直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來(lái)定義無(wú)理數(shù)(史稱(chēng)戴德金分割),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無(wú)理數(shù)被認(rèn)為“無(wú)理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī).所謂戴德金分割,是指將有理數(shù)集劃分為兩個(gè)非空的子集與,且滿(mǎn)足,,中的每一個(gè)元素都小于中的每一個(gè)元素,則稱(chēng)為戴德金分割.試判斷,對(duì)于任一戴德金分割,下列選項(xiàng)中,不可能成立的是()
A.沒(méi)有最大元素, 有一個(gè)最小元素B.沒(méi)有最大元素, 也沒(méi)有最小元素
C.有一個(gè)最大元素, 有一個(gè)最小元素D.有一個(gè)最大元素, 沒(méi)有最小元素
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn),分別為棱,的中點(diǎn),點(diǎn)為上底面的中心,過(guò),,三點(diǎn)的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連結(jié)和的任一點(diǎn),設(shè)與平面所成角為,則的最大值為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)人射擊,甲射擊一次中靶概率是,乙射擊一次中靶概率是.
(1)兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)概率是多少?
(2)兩人各射擊2次,中靶至少3次就算完成目標(biāo),則完成目標(biāo)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)市場(chǎng)調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬(wàn)元)與獲得的利潤(rùn)y(單位:萬(wàn)元)的數(shù)據(jù),如表所示:
資金投入x | 2 | 3 | 4 | 5 | 6 |
利潤(rùn)y | 2 | 3 | 5 | 6 | 9 |
(1)畫(huà)出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線(xiàn)性回歸直線(xiàn)方程;
(3)現(xiàn)投入資金10萬(wàn)元,求獲得利潤(rùn)的估計(jì)值為多少萬(wàn)元?
參考公式:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com