(09年東城區(qū)期末理)(14分)

已知點(N)順次為直線上的點,點(N)順次為軸上的點,其中,對任意的N,點、、構(gòu)成以為頂點的等腰三角形.

(Ⅰ)證明:數(shù)列是等差數(shù)列;

(Ⅱ)求證:對任意的N,是常數(shù),并求數(shù)列的通項公式;

  (Ⅲ)在上述等腰三角形中是否存在直角三角形,若存在,求出此時的值;若不存在,請說明理由.

解析:(Ⅰ)依題意有,于是.

所以數(shù)列是等差數(shù)列.                      ………………….4分

(Ⅱ)由題意得,即 , ()         ①

所以又有.                        ②    ………6分

由②①得,

可知都是等差數(shù)列.那么得

,

.    (       

                            …………10分

(Ⅲ)當(dāng)為奇數(shù)時,,所以

當(dāng)為偶數(shù)時,所以  

軸,垂足為,要使等腰三角形為直角三角形,必須且只需.                 

當(dāng)為奇數(shù)時,有,即 .             ①

當(dāng)時,;當(dāng)時,;當(dāng), ①式無解.

當(dāng)為偶數(shù)時,有,同理可求得.      

綜上所述,上述等腰三角形中存在直角三角形,此時的值為

.                                     ……………………..14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)期末理)(13分)

  已知函數(shù).

(Ⅰ)設(shè)曲線在點處的切線為,若與圓相切,求 的值;

(Ⅱ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)期末理)(14分)

如圖,在直三棱柱中,.

(Ⅰ)求證:;

(Ⅱ)求二面角的大小;

(Ⅲ)在上是否存在點,使得∥平面,若存在,試給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)期末理)(13分)

北京的高考數(shù)學(xué)試卷中共有8道選擇題,每個選擇題都給了4個選項(其中有且僅有一個選項是正確的).評分標準規(guī)定:每題只選1項,答對得5分,不答或答錯得0分.某考生每道題都給出了答案,已確定有4道題的答案是正確的,而其余的題中,有兩道題每題都可判斷其有兩個選項是錯誤的,有一道題可以判斷其一個選項是錯誤的,還有一道題因不理解題意只能亂猜.對于這8道選擇題,試求:

(Ⅰ) 該考生得分為40分的概率;

(Ⅱ) 該考生所得分數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)期末理)(13分)

已知函數(shù).

(Ⅰ)求的最小正周期及的最小值;

(Ⅱ)若,且,求的值.

查看答案和解析>>

同步練習(xí)冊答案