11.直三棱柱ABC-A1B1C1的各頂點都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,則此球的表面積等于( 。
A.20πB.10πC.D.5$\sqrt{5}$π

分析 通過已知條件求出底面外接圓的半徑,設此圓圓心為O',球心為O,在RT△OBO'中,求出球的半徑,然后求出球的表面積.

解答 解:如圖底面三角形ABC的外心是O′,O′A=O′B=O′C=r,
在△ABC中AB=AC=2,∠BAC=120°,
可得BC=$\sqrt{4+4-2×2×2×(-\frac{1}{2})}$=2$\sqrt{3}$,
由正弦定理可得△ABC外接圓半徑r=$\frac{2\sqrt{3}}{2sin120°}$=2,
設此圓圓心為O',球心為O,在RT△OBO'中,
易得球半徑R=$\sqrt{5}$,
故此球的表面積為4πR2=20π
故選A.

點評 本題是基礎題,解題思路是:先求底面外接圓的半徑,轉(zhuǎn)化為直角三角形,求出球的半徑,這是三棱柱外接球的常用方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.某航運公司有6艘可運載30噸貨物的A型貨船與5艘可運載50噸貨物的B型貨船,現(xiàn)有每天至少運載900噸貨物的任務,已知每艘貨船每天往返的次數(shù)為A型貨船4次和B型貨船3次,每艘貨船每天往返的成本費為A型貨船160元,B型貨船252元,那么,每天派出A型貨船和B型貨船各多少艘,公司所花的成本費最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知正項數(shù)列{an}的前n項的和為Sn,且滿足:$2{S_n}={a_n}^2+a{\;}_n$,(n∈N+
(1)求a1,a2,a3的值
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義函數(shù)序列:${f_1}(x)=f(x)=\frac{x}{1-x}$,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),則函數(shù)y=f2017(x)的圖象與曲線$y=\frac{1}{x-2017}$的交點坐標為( 。
A.$({-1,-\frac{1}{2018}})$B.$({0,\frac{1}{-2017}})$C.$({1,\frac{1}{-2016}})$D.$({2,\frac{1}{-2015}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知矩形ABCD中,AB=2,AD=1,M為CD的中點.如圖將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求證:BM⊥平面ADM;
(Ⅱ)若點E是線段DB上的中點,求三棱錐E-ABM的體積V1與四棱錐D-ABCM的體積V2之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在區(qū)間[0,1]上任取兩個實數(shù)a,b,則函數(shù)f(x)=x2+ax+b2無零點的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的離心率是( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{25}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.集合 A={x|-1<x<1},B={x|x(x-2)>0},那么 A∩B=( 。
A.{x|-1<x<0}B.{x|-1<x<2}C.{x|0<x<1}D.{x|x<0或x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.y=$\frac{1}{x}$B.y=2|x|C.y=ln$\frac{1}{|x|}$D.y=x2

查看答案和解析>>

同步練習冊答案