10.在正方體ABCD-A1B1C1D1中,E為A1A的中點(diǎn),如圖所示,試作出過B1,D1,E三點(diǎn)的平面與平面ABCD的交線.

分析 根據(jù)題意,畫出圖形,結(jié)合圖形,得出平面B1D1E與平面ABCD的交線是什么.

解答 解:根據(jù)題意,連接B1E,并延長交BA于點(diǎn)P,
過點(diǎn)P做PQ∥B1D1,交CD與點(diǎn)Q,
∴PQ是平面B1D1E與平面ABCD的交線,
如圖所示.

點(diǎn)評 本題考查了畫出兩個平面交線的應(yīng)用問題,也考查了空間想象能力與畫圖能力,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=cos($\frac{π}{3}-2x$)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:a>b>0,求證:aabb>(ab)${\;}^{\frac{a+b}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=sin($\frac{π}{3}$-2x).
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的對稱中心;
(3)求函數(shù)在[-π,0]上的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知3cos2α+2cos2β=2cosα,求sin2α+cos2β取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=cos(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$].的值域是( 。
A.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]C.[$\frac{\sqrt{3}}{2}$,1]D.[$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下面幾個空間圖形中,虛線、實線使用不正確的有(  )
A.(2)(3)B.(1)(3)C.(3)(4)D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,求證:cos(A+B)=-cosC,cos$\frac{A+B}{2}$=sin$\frac{C}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)$(0,\sqrt{3})$,離心率為$\frac{1}{2}$,左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線y=x+1與橢圓交于A,B兩點(diǎn),與以線段F1F2為直徑的圓交于C,D兩點(diǎn),求$\frac{|AB|}{|CD|}$的值.

查看答案和解析>>

同步練習(xí)冊答案