【題目】
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
【答案】(Ⅰ)橢圓的標準方程為;雙曲線的標準方程為
(Ⅱ)=1.(Ⅲ)存在常數(shù)使得恒成立,
【解析】
試題(1)設(shè)橢圓的半焦距為c,由題意知:,
2a+2c=4(+1),所以a=2,c=2.
又a2=b2+c2,因此b=2.故橢圓的標準方程為=1.
由題意設(shè)等軸雙曲線的標準方程為=1(m>0),因為等軸雙曲線的頂點是橢圓的焦點,所以m=2,因此雙曲線的標準方程為=1.
(2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0),則k1=,k2=.
因為點P在雙曲線x2-y2=4上,所以x-y=4.
因此k1·k2=·==1,即k1·k2=1.
(3)由于PF1的方程為y=k1(x+2),將其代入橢圓方程得(2k+1)x2-8kx+8k-8=0,
顯然2k+1≠0,顯然Δ>0.由韋達定理得x1+x2=,x1x2=.
所以|AB|=
=.
同理可得|CD|=.
則,
又k1·k2=1,
所以.
故|AB|+|CD|=|AB|·|CD|.
因此存在λ=,使|AB|+|CD|=λ|AB|·|CD|恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為正方形,平面平面ABCD,,,E,F分別為AD,PB的中點.
(1)求證:平面ABCD;
(2)求證:平面PCD;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BGF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與的濃度是否有關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與的濃度的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 100 | 102 | 108 | 114 | 116 |
的濃度(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根據(jù)上表數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)若周六同一時間段車流量是200萬輛,試根據(jù)(1)求出的線性回歸方程,預(yù)測此時的濃度為多少.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:的左、右焦點分別為,,,是右支上的一點,與軸交于點,的內(nèi)切圓在邊上的切點為.若,則的離心率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:
(1)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)m,并將完成生產(chǎn)任務(wù)所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:
超過m | 不超過m | 總計 | |
第一種生產(chǎn)方式 | |||
第二種生產(chǎn)方式 | |||
總計 |
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認為兩種生產(chǎn)方式的效率有差異?
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為美化城市環(huán)境,相關(guān)部門需對一半圓形中心廣場進行改造出新,為保障市民安全,施工隊對廣場進行圍擋施工.如圖,圍擋經(jīng)過直徑的兩端點A,B及圓周上兩點C,D圍成一個多邊形ABPQR,其中AR,RQ,QP,PB分別與半圓相切于點A,D,C,B.已知該半圓半徑OA長30米,∠COD為60°,設(shè)∠BOC為.
(1)求圍擋內(nèi)部四邊形OCQD的面積;
(2)為減少對市民出行的影響,圍擋部分面積要盡可能小.求該圍擋內(nèi)部多邊形ABPQR面積的最小值?并寫出此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a∈R).
(Ⅰ)求f(x)在區(qū)間[-1,2]上的最值;
(Ⅱ)若過點P(1,4)可作曲線y=f(x)的3條切線,求實數(shù)a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com