【題目】在三棱柱ABC﹣A1B1C1中,側(cè)棱A1A⊥底面ABC,AC=1,AA1=2,∠BAC=90°,若直線AB1與直線A1C的夾角的余弦值是 ,則棱AB的長度是 .
【答案】2
【解析】解:建立如圖所示的坐標(biāo)系,設(shè)AB=x,則A(0,0,0),B1(x,0,2),A1(0,0,2),C(0,1,0),
∴ =(x,0,2), =(0,1,﹣2),
∵直線AB1與直線A1C的夾角的余弦值是 .
即 ,∴x=2.
所以答案是:2.
【考點(diǎn)精析】掌握異面直線及其所成的角是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣相鄰兩鎮(zhèn)在一平面直角坐標(biāo)系下的坐標(biāo)為A(1,2)、B(4,0),一條河所在直線方程為l:x+2y-10=0,若在河邊l上建一座供水站P使之到A、B兩鎮(zhèn)的管道最省,問供水站P應(yīng)建在什么地方?此時|PA|+|PB|為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,q:實(shí)數(shù)x滿足(x﹣3)2<1.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn),且函數(shù)= 是偶函數(shù)
(1)求的解析式;
(2)已知,求函數(shù)在的最大值和最小值
(3)函數(shù)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求證:f(x)的圖象在g(x)圖象的上方;
(Ⅱ) 若f(x)和g(x)的圖象有公共點(diǎn)P,且在點(diǎn)P處的切線相同,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列四個正方體中,為正方體的兩個頂點(diǎn),為所在棱的中點(diǎn),則在這四個正方體中,直接與平面不平行的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(2)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點(diǎn).
求證:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
試求:(1)y與x之間的回歸方程;
(2)當(dāng)使用年限為10年時,估計維修費(fèi)用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com