6.已知f(x)=(x-a)(x-b)-2,(a<b)的兩個零點分別為α,β,(α<β)則( 。
A.a<α<b<βB.α<a<b<βC.a<α<β<bD.α<a<β<b

分析 可設(shè)g(x)=(x-a)(x-b),從而得到a,b是函數(shù)g(x)的兩個零點,可看出f(x)的圖象是由g(x)的圖象向下平移2個單位得到,從而便可得出α<a<b<β.

解答 解:設(shè)g(x)=(x-a)(x-b),則a,b是g(x)的兩個零點;
函數(shù)f(x)的圖象可以看成g(x)圖象向下平移2個單位得到,且a<b,α<β,如圖所示:

∴α<a<b<β.
故選B.

點評 考查函數(shù)零點的概念,以及沿y軸方向的平移變換,要熟悉二次函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一天,小亮看到家中的塑料桶中有一個豎直放置的玻璃杯,桶子和玻璃杯的形狀都是圓柱形,桶口的半徑是杯口半徑的2倍,其主視圖如左圖所示.小亮決定做個試驗:把塑料桶和玻璃杯看作一個容器,對準(zhǔn)杯口勻速注水,注水過程中杯子始終豎直放置,則下列能反映容器最高水位h與注水時間t之間關(guān)系的大致圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=$\sqrt{x}$-alnx,a∈R
(1)若a=2,求f(x)的最值;
(2)若f(x)存在最小值,求其最小值g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$a+\frac{1}{a}=7$,則${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$=( 。
A.3B.9C.-3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\|{log_3}x|,x>0\end{array}\right.$,則f(f(-1))的值為(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(Ⅰ)計算0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75的值.
(Ⅱ)計算lg25+lg2lg50+2${\;}^{1+lo{g}_{2}5}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)命題p:x2+2x-3<0 q:-5≤x<1,則命題p成立是命題q成立的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知tanx=-1,且cosx=-$\frac{\sqrt{2}}{2}$,求x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=x+$\frac{1}{x-1}$(x>1)在x=a處取最小值,則實數(shù)a=2.

查看答案和解析>>

同步練習(xí)冊答案