2.在空間直角坐標(biāo)系中,設(shè)A(m,1,3),B(1,-1,1),且|AB|=2$\sqrt{2}$,則m=1.

分析 由已知中A(m,1,3),B(1,-1,1),且|AB|=2$\sqrt{2}$,代入兩點(diǎn)之間距離公式,可得答案.

解答 解:A(m,1,3),B(1,-1,1),
∴|AB|=2$\sqrt{2}$=$\sqrt{(m-1)^{2}+(1+1)^{2}+(3-1)^{2}}$,
解得:m=1;
故答案為:1

點(diǎn)評 本題考查的知識點(diǎn)是空間兩點(diǎn)之間的距離公式,方程思想,難度基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知定義在R上的奇函數(shù)f(x)滿足f(x+4)=f(x),且x∈(0,2)時(shí)f(x)=x2+1,則f(7)的值為 -2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0),作圓x2+y2=$\frac{a^2}{4}$的切線,切點(diǎn)為E,延長FE交雙曲線右支于點(diǎn)P,若$\overrightarrow{OP}$=2$\overrightarrow{OE}$-$\overrightarrow{OF}$,則雙曲線的離心率是$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列五個(gè)命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點(diǎn);
②若f'(x0)=0,則函數(shù)y=f(x)在x=x0處取得極值;
③命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x>0”;
④“1<x<2”是“2x>1成立”的充分不必要條件
⑤若函數(shù)y=f(x+2)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=2對稱;
其中正確命題的序號是①④⑤(請?zhí)钌纤姓_命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱錐P-ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中點(diǎn).
(1)求異面直線AE和PB所成角的余弦值.
(2)求三棱錐A-EBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個(gè)命題中的真命題是( 。
A.經(jīng)過定點(diǎn)P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過任意兩個(gè)不同點(diǎn)P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示
C.不經(jīng)過原點(diǎn)的直線都可以用方程$\frac{x}{a}+\frac{y}=1$表示
D.經(jīng)過定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.由-1,0,1,2,3這5個(gè)數(shù)中選3個(gè)不同數(shù)組成二次函數(shù) y=ax 2+bx+c 的系數(shù).
(1)開口向上的拋物線有多少條?
(2)開口向上且不過原點(diǎn)的拋物線有多少條?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線(k+1)x-(2k-1)y+3k=0恒過定點(diǎn)(-1,1).

查看答案和解析>>

同步練習(xí)冊答案