如圖,圓O與圓O′內(nèi)切于點T,點P為外圓O上任意一點,PM與內(nèi)圓O′切于點M.求證:PM∶PT為定值
.
科目:高中數(shù)學 來源: 題型:
已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.求證:
(1) △ABC≌△DCB;
(2) DE·DC=AE·BD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,PA切圓O于點A,割線PBC交圓O于點B、C,∠APC的角平分線分別與AB、AC相交于點D、E,求證:
(1) AD=AE;
(2) AD2=DB·EC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=|x-a|.
(1) 若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2) 在(1)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
下列推理中屬于歸納推理且結(jié)論正確的是( )
A.設(shè)數(shù)列{an}的前n項和為Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:Sn=n2
B.由f(x)=xcos x滿足f(-x)=-f(x)對∀x∈R都成立,推斷:f(x)=xcos x為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2,推斷:橢圓=1(a>b>0)的面積S=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對一切n∈N*,(n+1)2>2n
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知常數(shù)a,b,c都是實數(shù),f(x)=ax3+bx2+cx-34的導函數(shù)為f′ (x),f′(x)≤0的解集為{x|-2≤x≤3},若f(x)的極小值等于-115,則a的值是( )
A.- B.
C.2 D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com